Научный редактор доктор биологических наук В.Н. Орлов
Фото автора из его архива.
© Климов В., текст, 2020
© Климов В., иллюстрации, 2020
© ФГУП Издательство «Наука», 2020
Введение
Два организма взаимно полезны,
Связаны вместе просто железно.
Жить в одиночку? – огромный вопрос.
Такое сожительство есть симбиоз.
Н. Шолкина
Откуда взялись первые рыбы, насекомые, прочие животные и человек? Как они менялись и почему? Все мы знаем, что на эти вопросы когда-то ответил великий англичанин Чарльз Дарвин. Во всех своих книгах он говорил об эволюции, процессе медленных изменений всех живых организмов, и естественном отборе, который сопровождается борьбой за существование, приспособлением к меняющейся среде и конкуренцией. С тех пор прошло почти 150 лет, и современные ученые, наблюдая за жизнью живых существ, выяснили еще один интересный момент! Оказывается, эволюцией всего живого на нашей планете движет не только борьба, но и дружба! Или, говоря научным языком, симбиоз. Это не значит, что речь идет о каком-то особом законе эволюции. Нет, как раз естественный отбор, на основе конкуренции, избирательного выживания и размножения более приспособленных организмов и ведет к тому, что на смену борьбе нередко приходит сотрудничество: в ряде случаев организмам выгоднее перейти к взаимовыгодному сосуществованию и даже сожительству – либо с себе подобными, либо с представителями других видов. Ведь, подумайте сами, драться и воевать долго очень трудно, тут каждый устанет! Поэтому легче и удобнее дружить! В итоге организмы, которые сумели подружиться, оказываются более приспособленными и лучше выживают в условиях изменений окружающей среды.
Так что же это такое – симбиоз? Ученые называют симбиозом сосуществование двух или нескольких разных видов растений или животных, когда их отношения друг с другом очень тесны и обычно взаимовыгодны. Так им легче питаться и преодолевать неблагоприятные воздействия окружающей среды. В широком смысле симбиоз – любая форма взаимовыгодного сотрудничества нескольких живых существ. Когда же разные организмы фактически сливаются в единый сверхорганизм, принято говорить о симбиогенезе – происхождении новых организмов в результате симбиоза.
Преимущества, которые получает организм, вступающий в симбиотические отношения, могут быть разными. Бывает, один из партнёров использует другого в качестве пищи, а второй получает защиту от врагов или благоприятные для роста и размножения условия. В других случаях организм, выигрывающий в пище, освобождает партнёра от паразитов, опыляет растения или распространяет семена. Каждый из участников дружеской пары действует эгоистично, и их отношения возникают лишь потому, что они выгодны обоим, получаемая польза перевешивает затраты, требуемые на поддержание взаимоотношений.
В широком смысле симбиоз охватывает все формы тесного сожительства организмов разных видов, включая и паразитизм, который в этом случае называется антагонистическим симбиозом. В природе встречается широкий спектр примеров взаимовыгодного симбиоза (мутуализм). От желудочных и кишечных бактерий, без которых было бы невозможно наше пищеварение, до растений (примером служат некоторые орхидеи, чью пыльцу может распространять только один определённый вид насекомых). Такие отношения возникают тогда, когда они увеличивают шансы обоих партнёров на выживание. Осуществляемые в ходе симбиоза действия или производимые вещества для партнёров существенны и незаменимы. В обобщённом понимании такой симбиоз – промежуточное звено между взаимодействием и слиянием.
Следует также помнить, что симбиоз – это не только сосуществование разных видов живых организмов. На заре эволюции именно благодаря ему одноклеточные организмы одного вида объединились в многоклеточный организм, колонию, которая со временем превратилась в единый организм, – так рождалось разнообразие современной флоры и фауны.
Всю свою жизнь я, как биолог и путешественник, провел в мире природы, ныряя в глубины океанов, блуждая по тропическим лесам и саваннам, поднимаясь в горы и забираясь в пустыни. Мне повезло – я сам, своими глазами видел многих из описанных здесь существ, наблюдал особенности их поведения. И они стали моими друзьями – все эти чудесные муравьи, рыбки, птицы, крокодилы и многие другие обитатели нашей планеты.
Совместное проживание, кооперация и сотрудничество! Что может быть лучше в отношениях с соседями по планете? Вот именно так и нужно жить каждому из нас! Мы же всё время с кем-то воюем! То с ближними соседями, то с дальними… Зачем? А вот вечная природа даёт нам совершенно иные примеры. Там все стараются дружить со всеми. К примеру, обычный ленивец из лесов Южной Америки представляет собой целую экосистему, с тысячами организмов, живущими внутри него и снаружи. Причем они отнюдь не паразиты, а настоящие друзья, помогают жить этому чудесному медлительному зверю. И так – во многих, многих случаях, своего благополучия животные и растения достигают только сообща, вместе!
В природе известны три формы симбиоза – мутуализм, комменсализм и паразитизм. И мы расскажем вам о каждом из них.
Мутуализм
Мутуализм – форма симбиоза, при которой два разных вида сливаются воедино, сохраняя свои видовые особенности. Они обязательно должны участвовать в совместной кооперации, и каждый из них получает относительно равную пользу. При этом партнёры, как правило, не могут существовать друг без друга. Взаимовыгодные связи нередко формируются на основе поведенческих реакций, например, у птиц, совмещающих собственное питание с распространением семян. Иногда виды-мутуалисты вступают в тесное физическое взаимодействие – как при образовании микоризы (грибокорня) между грибами и корнями растений.
Тесный контакт видов-мутуалистов стимулирует их совместную эволюцию. Характерным примером служат взаимные приспособления, которые сформировались у цветковых растений и их опылителей. Часто виды-мутуалисты совместно расселяются и совместно эволюционируют!
Типичный пример мутуализма – отношения термитов и жгутиковых простейших, обитающих в их кишечнике. Термиты питаются древесиной, однако у них нет ферментов для переваривания целлюлозы. Жгутиконосцы вырабатывают такие ферменты и переводят клетчатку в сахара, которые термиты уже способны усваивать. Без жгутиконосцев – симбионтов – термиты погибли бы от голода. Сами же жгутиконосцы помимо благоприятного микроклимата получают в кишечнике своих друзей-хозяев пищу и условия для размножения.
Много примеров мутуализма есть и в жизни растений.
Зарождение жизни
В кислотных, мелких океанах
Грядущей жизни ипостась,
В подводных выбросах вулканных
Преджизнь впервые родилась.
След вёл в Архей. Там в тёплых водах,
Всей жизни укрепляя тыл,
Прокариотами в природе,
Освоен фотосинтез был.
Юрий Бахарев
Симбиоз сыграл огромную роль на заре жизни, когда в безбрежном и тёплом Мировом океане появились первые живые создания – археи и бактерии. Как известно, в первые 2 млрд лет Землю населяли только простые, примитивные создания, которых учёные называют прокариоты. В отличие от эукариот, сложных клеток, из которых состоим и мы с вами, это более просто устроенные клетки. У них нет ядра, митохондрий, нет других внутриклеточных структур, окружённых мембранами. Все прокариоты – это бактерии и археи.
Ясно, что они просто не могли обойтись без взаимодействия друг с другом. Впрочем, не могут и сейчас. В архейскую и протерозойскую эры основной формой жизни были микробные сообщества, так называемые бактериальные маты. В некоторых экстремальных местах обитания планеты они сохранились и по сей день. Такой бактериальный мат похож на многослойный коврик. Его верхний слой образуют фотосинтезирующие бактерии (обычно цианобактерии), которые выделяют кислород и производят органику. Под ними расположен слой, образуемый пурпурными бактериями, – они тоже «фотосинтезируют», но используют при фотосинтезе в качестве донора электрона не воду, а сероводород и выделяют не кислород, а серу и сульфаты. Там же живут бактерии, использующие кислород для разложения органики. Благодаря их деятельности кислород не проникает в нижний слой бактериального мата – анаэробный слой, где кислорода почти нет.
Этот анаэробный слой чёрного цвета населён бродильщиками, вызывающими брожение органики (её ферментативное разложение в отсутствие кислорода). Побочный продукт их обмена веществ – молекулярный водород, который другие обитатели нижнего слоя бактериальных матов – сульфат-редукторы – используют для восстановления сульфатов, выделенных пурпурными бактериями. В результате образуется сероводород, необходимый пурпурным бактериям. Получается замкнутый химический цикл, в котором участвуют как минимум три компонента – три разные группы микроорганизмов. Все вместе они напоминают единый организм – отдельные его части не могут существовать друг без друга (а если и могут, то растут гораздо хуже).
По современной классификации, весь мир живых организмов делится на три надцарства (домена): археи, бактерии, эукариоты. Крупнейшим событием в эволюции жизни на планете Земля стало появление эукариот – сложных клеток. Оно открыло огромные возможности – только эукариоты могли в ходе эволюции образовать многоклеточные организмы.
Их появление стало итогом долгого этапа эволюции жизни, когда основной её формой было микробное сообщество. Такие сообщества составляли более сложные образования, которые могли существовать только благодаря симбиозу. Так появились эукариотические клетки, которые имели ядро, а также митохондрии и другие оформленные органеллы, окружённые двойной мембраной. Из таких клеток состоят тела всех животных, растений, грибов. Кроме того, к эукариотам относятся многие одноклеточные – так называемые простейшие (амёбы, инфузории и т. д.).
Как же появились эукариоты – настоящие сложные клетки? Тоже в результате симбиогенеза – слияния в единый организм нескольких разных видов прокариот. Об этом учёные начали догадываться ещё в начале XX века. Термин «симбиогенез» ввёл К.С. Мережковский, известный русский учёный-альголог, изучавший диатомовые водоросли (одноклеточные эукариоты). Он заметил, что их хлоропласты (органоиды растительных клеток, в которых протекает фотосинтез) удивительно похожи на свободно живущих цианобактерий (раньше их называли синезелёными водорослями).
Кроме солнечного света, для элементарного акта фотосинтеза этим бактериям необходимо вещество, используемое как источник электрона. От него отрывается электрон, который потом идёт на восстановление углекислого газа. Это вещество – донор электрона, окисляемый при фотосинтезе. У цианобактерий это вода. В результате фотоокисления воды образуется свободный кислород, у анаэробных фотосинтезирующих бактерий донором электронов служит сероводород, а на выходе образуются сера и сульфаты. В любом случае, все составные части стали работать как единый организм, постепенно всё усложняясь и усложняясь.
Друзья сине-зелёных водорослей
Море – чудная страна:
Сверху синь одна видна.
А нырнёшь, и под водой
Встанет мир перед тобой.
Рыбы машут плавниками
Над зелёными лугами.
Лес кораллов подрастает,
В нём коньки летают стаей.
На камнях из мха подушки,
Под подушками ракушки.
Инна Ищук
Синезелёные водоросли, или циане́и, – одни из древнейших микроорганизмов на Земле. По сути, это – цианобактерии (Cyanobacteria). Когда-то в Древнем океане они дали основание первичной жизни. Цианобактерии обладают потрясающими способностями к выживанию в самых трудных условиях. Это единственные бактерии, способные к полноценному фотосинтезу, – используя энергию квантов света, они превращают углекислый газ в зелёную массу. Именно с ними мои читатели – аквариумисты, держащие дома рыбок, порой безуспешно сражаются круглый год. Эта зелёная «чума» стремится захватить всех и вся, покрыть зелёной плёнкой коряги, стенки аквариумов и т. д.
Неутомимые и радостные цианеи – на удивление дружелюбные создания. Они стремятся соединиться в симбиотическом экстазе со многими растениями, мхами, лишайниками, простейшими и т. д. Они образуют симбиоз с тремя родами печёночников (Anthoceros, Blasia и Clavicularia), некоторыми мхами (например, Sphagnum), одним папоротником (свободноплавающее водное растение Azolla), многими саговниками (например, Encephalartos) и со всеми 40 видами цветковых растений рода Gunnera. У печёночников водоросль Nostoc живёт в слизистых полостях таллома и растение реагирует на её присутствие образованием тонких нитей, увеличивающих контакт между симбионтами. Водоросль снабжает растение-хозяина азотом, получая от него соединения углерода.
С одноклеточными животными зелёные и желто-зелёные водоросли образуют крупную группу зоохлорелл и зооксантелл. С протозоа и некоторыми другими они образуют своеобразную группу эндо-симбиозов, получивших название синцианозов. Из многоклеточных животных наши герои дружат с пресноводными губками, гидрами, полипами, другими простейшими созданиями.
Зачастую цианобактерии проникают внутрь различных сложных организмов и им удаётся не только сохраниться внутри клеток хозяина в неповреждённом виде, но и приспособиться к новым, необычным условиям жизни и начать размножаться. В результате между разными организмами устанавливаются отношения нового типа – симбиотические.
Цианобактерии проникают внутрь подвижной одноклеточной водоросли эвглены (Euglena gracilis), ресничной инфузории парамеции (Paramecium bursaria), в эпителиальные клетки задней кишки личинок некоторых видов стрекоз, поселяются в эпидермальных клетках ресничного червя конволюта (Convoluta roscoffensis) и т. д.
В ряде случаев между симбионтами складываются настолько тесные и взаимозависимые отношения, что по одиночке они жить уже не могут. Очевидно, они необратимо утрачивают способность самостоятельно вырабатывать целый ряд веществ, которые в готовом виде поступают от живущих с ними водорослей. Так, гидра отказывается жить самостоятельно, поскольку мальтозу (иначе солодовый сахар), которой гидра питается, она получает в нужном количестве именно из клетки «своей» зелёной водоросли.