ВСТУПЛЕНИЕ
Со времен начала реализации политики реформ и открытости, в деле мостостроения в Китае, особенно в области строительства крупных автомобильных мостов были достигнуты блестящие результаты. По состоянию на конец 2016 г. было построено и введено в эксплуатацию 805 300 автодорожных мостов протяженностью 49 169 700 погонных метров, из данного количества было построено 4257 очень крупных мостов протяженностью 7 535 400 погонных метров и 86 178 больших мостов протяженностью 22 515 000 погонных метров.
Автомобильные мосты пересекают заливы, реки и горные ущелья… тем самым осуществляется задача беспрепятственного обращения товаров и удобства передвижения людей , мосты являются отражением грандиозных планов китайской нации по модернизации транспортного сообщения и реализации программы народного благосостояния «Два столетия китайской мечты».
В ноябре 2014 г. Министерство транспорта приняло решение поручить Китайской отраслевой ассоциации автодорожного строительства работы по написанию «Хроники строительства скоростных автотрасс в Китае», чтобы показать славный путь развития строительства скоростных автодорог в Китае. В процессе разработки общего плана работ и изучения программы написания «Хроники строительства скоростных автотрасс в Китае» мы считали, что большие мосты, проложенные через горные ущелья, явились прямым результатом строительства скоростных автотрасс и в то же время демонстрируют блестящие достижения строительства автомобильных дорог.
В последние годы увеличивается количество исследований , проводимых в Китае, касающихся строительства больших мостов, они становятся более углубленными и содержательными, особенно что касается исследований морских мостов, таких как мост Гонконг-Чжухай -Макао, мост Хумэнь, большой мост Хайцан, транспортный инфраструктурный проект соединения островной части с континентом «Чжоушань», большой трансокеанский мост через залив Ханчжоувань, мост Цзяшао, мост Дунхай , мост через бухту Цзяочжоу в Циндао, мост Цинма в Гонконге и т. д. Среди мостов, построенных через водные преграды, можно выделить мосты через реки Янцзы, Хуанхэ, Чжуцзян, Хуанпу и др., а также бесчисленное количество других мостов, как например, мост через озеро Дунтин, мост через озеро Поянху. Выполнены относительно систематические тематические исследования, посвященные вопросам строительства больших мостов, на основании данных исследований стало активно развиваться международное сотрудничество и обмен опытом в области строительства мостов, таким образом, за Китаем закрепился статус мировой державы в области мостостроения.
Однако что касается больших мостов, построенных через ущелья, в горных районах и на высокогорье, и по степени информированности и по количеству проведенных специализированных исследований в этой области сделано далеко недостаточно. Поэтому при написании «Хроники строительства скоростных автотрасс в Китае», мы провели исследования, касающиеся строительства мостов через ущелья, и вместе с Чунцинским транспортным университетом создали совместную «Исследовательскую группу по изучению вопросов строительства автодорожных мостов, проложенных через ущелья», пользуясь такими преимуществами как высокий профессионализм специалистов Чунцинского транспортного университета, удобное расположение университета, находящегося на юго-западе Китая, региональное расположение объектов, нами были проведены работы по изучению ситуации со строительством мостов в регионах.
После более чем года кропотливой работы исследовательская группа по изучению вопросов строительства автодорожных мостов, проложенных через ущелья, провела исследования на местах строительства 72 мостов. На протяжении всего процесса начиная с камерального сбора информации, касающейся строительства автодорожных мостов, проложенных через ущелья, до проведения полевых исследований на местах, были заслушаны мнения и замечания строительных организаций , участвовавших в строительстве мостов, были проведены совещания, на которых члены группы обменивались мнениями и обсуждали вопросы, касающиеся определения типов мостов, их технических особенностей , вопросов проектирования и технологии строительства, технического обслуживания, управления и других аспектов, было накоплено большое количество информационных данных о мостах, построенных в горной местности, которые были использованы в дальнейших исследованиях.
По неполным статистическим данным, мосты через ущелья, построенные на территории материкового Китая находятся в 17 провинциях, автономных районах и городах центрального подчинения страны. Количество построенных и строящихся мостов через ущелья составляет 378 мостов, в том числе 75 арочных мостов, 257 балочных мостов (в основном сплошные рамные мосты), 20 подвесных мостов, 26 вантовых мостов. На основании «Отчета об исследовании автодорожных мостов через ущелья, построенных в Китае», мы составили специальный доклад «Исследование автодорожных мостов через ущелья, построенных в Китае», были отобраны 108 автодорожных мостов через ущелья, после чего была составлена книга «Мосты через ущелья, построенные в Китае», которую мы представляем на ознакомление нашим читателям. Необходимо пояснить, что мосты, включенные в эту книгу, расположены в последовательном порядке по размерам пролета, то есть сначала описаны подвесные мосты, затем вантовые мосты, арочные мосты и балочные мосты. Цель этой книги заключается в том, чтобы продемонстрировать читателям достижения нашей страны в мостостроении, в строительстве высококлассных автомагистралей , особенно скоростных автодорог, достижения Центрального комитета партии и Государственного совета в области реализации политики «Развития западного Китая», а также достижения, полученные в ходе реализации инициативы «Один пояс – один путь».
Различия между мостами через ущелья, трансморскими мостами, мостами через реки и озера, городскими мостами и другими видами мостов возникают из-за разных типов местного ландшафта и особенностей местности. Поэтому определение «мост через ущелье» говорит само за себя, как и названия других типов мостов – морские мосты, мосты через реки и озера. Основные различия между разными типами мостов заключаются в наличии разных технических характеристик, которые зависят от рельефа, геоморфологии, геологических условий и внешней среды местности, где построен мост.
Из-за ограниченности профессионального уровня и глубины проведенных исследований , в нашей работе все еще имеются неполные данные и даже неточности. Цель данной книги – сделать первый вклад в изучении вопроса, мы надеемся, что вопрос строительства мостов через ущелья вызовет интерес со стороны мостостроительных организаций , наша книга послужит толчком для дальнейшего углубленного изучения вопросов строительства мостов через ущелья в нашей стране, тем самым принося пользу людям и будущим поколениям. Мы также хотим выразить благодарность соответствующим службам транспортного сообщения провинций , автономных районов и городов центрального подчинения, а также управляющим учреждениям по проектированию, строительству и управлению мостами, построенных в горных районах за предоставленную в ходе проведения исследования информацию, графические и проектные данные, касающиеся строительства и управления мостовыми сооружениями. Особая благодарность Китайской отраслевой ассоциации автодорожного строительства и Чунцинскому транспортному университету за оказанную поддержку и помощь в наших исследованиях.
Глава 1. Исследование автодорожных мостов, проложенных через ущелья в Китае
АВТОДОРОЖНЫЕ МОСТЫ ЧЕРЕЗ УЩЕЛЬЯ В СОВРЕМЕННОМ КИТАЕ
ИССЛЕДОВАНИЕ АВТОДОРОЖНЫХ МОСТОВ, ПРОЛОЖЕННЫХ ЧЕРЕЗ УЩЕЛЬЯ В КИТАЕ
В ноябре 2014 г. Министерство транспорта инициировало работы по написанию «Хроники строительства скоростных автотрасс в Китае» и учредило редакторскую комиссию. Редакторская комиссия в процессе изучения программы написания «Хроники строительства скоростных автотрасс в Китае» признала факт, что мосты, проложенные через горные ущелья, являются «выдающимся достижением» программы строительства скоростных автотрасс в западно-центральном районе Китая, исполнение которой явилось результатом успешной реализации государственной политики «Освоение Запада», направленной на ускоренное развитие западных регионов страны и программы строительства скоростных автотрасс. Руководители Министерства транспорта утвердили создание совместной «Исследовательской группы по изучению вопросов строительства автодорожных мостов, проложенных через ущелья», в состав которой вошли представители Китайской Отраслевой ассоциации автодорожного строительства и Чунцинского транспортного университета. В период с марта по ноябрь 2016 г., исследовательская группа провела исследования на местах строительства 72 мостов, построенных в провинциях Гуанси, Хунань, Юньнань, Шэньси, Хубэй , Гуйчжоу, Сычуань, Шаньси, административном районе Чунцин, в общей сложности в 9 провинциях, автономных районах и городах центрального подчинения, также провела 7 совещаний в г. Наньнин, г. Цзишоу, г. Тэнчун, г. Сиань, г. Ухань, г. Гуйъян и др., на которых члены группы обменивались мнениями и обсуждали вопросы, касающиеся определения типов мостов, построенных через ущелья, их технических особенностей , вопросов проектирования и технологии строительства, технического обслуживания, управления и других аспектов, было выдвинуто большое количество конструктивных замечаний и предложений . В данной главе изложено систематизированное заключение о достигнутых результатах в области строительства автодорожных мостов, проложенных через горные ущелья в Китае со времен начала политики реформ открытости, изложена информация, касающаяся определения и основных особенностей мостов, построенных через ущелья, дана исчерпывающая информация о технических особенностях данных типов мостов, был сделан ряд предложений , касающихся строительства мостов, прокладываемых через горные ущелья.
Данная часть была опубликована в журнале «Автодороги Китая» выпуск 01 за 2017 г., при включении в данную книгу были внесены поправки.
1 Краткий очерк истории развития строительства мостов через горные ущелья в Китае и за рубежом
На территории Китая в основном преобладают горные районы и высокогорье, площадь, занимаемая горными районами и высокогорьем составляет прим. 69% от общей площади территории страны. Для пересечения горных участков, ущелий и высокогорий , встречающихся в процессе прокладки дорог на автодорогах государственного, провинциального и местного значения было построено большое количество мостов, проложенных через горные участки и ущелья. До начала проведения политики реформ и открытости, в условиях определенной ограниченности знаний в области теории проектирования, техники строительства, строительных материалов, строительного оборудования и техники, ограниченности экономической мощи страны и др., выбор маршрута и трассировка дорог большей частью осуществлялась путем прокладки по линии пересечения горного хребта с последующим соединением с линией вдоль долины реки, затем в подходящем месте строился небольшой по размерам мост для пересечения горного ущелья, категория дорог была меньше категории дорог мостового типа, в основном преобладали каменные арочные мосты с длиной пролета менее 60 м. В 70 – 80-х гг. 20 века, с применением технологий навесной сборки с помощью канатной системы, консольной техники строительства, в горных ущельях один за другим стали строить различные виды мостов: арочные мосты из бетонных блоков, комбинированные арочные мосты сквозной конструкции, сплошные рамные мосты и другие виды мостов с большой длиной пролета. В 1988 г. в материковом Китае была построена первая скоростная автомагистраль, впоследствии растущее быстрыми темпами строительство скоростных автодорог способствовало процессу развития технологий строительства крупных автомобильных мостов в стране. В 2000 г. Государственный совет Центрального комитета партии принял важное стратегическое решение о реализации программы «Развития западного Китая», направленной на ускоренное развитие западных регионов страны, для комплексной координации социально-экономического развития региона, улучшения ситуации с транспортным сообщением в западных регионах, данное решение имело важное политическое значение в делеускорения процесса избавления от нищеты и достижения зажиточности в менее благополучных регионах страны. Сложный ландшафт и рельеф центральных и западных регионов Китая явились сложным испытанием для строителей скоростных магистралей , глубокие рвы и ущелья явились большой проблемой , ставшей на пути прокладки скоростных дорог на западе, и именно эта проблема подняла на новый уровень и стимулировала развитие строительства мостов через ущелья в Китае. Один за другим строились мосты через ущелья, вызвавшие большой резонанс в мире: мост Айчжай в пр. Хунань, мост через реку Циншуйхэ в пр. Гуйчжоу, мост Лунцзян в пр. Юньнань, мост через р. Бэйпаньцзян в пр. Гуйчжоу.
За рубежом строительство мостов через ущелья с большой длиной пролетов началось в 20-х гг. 20 века, поочередно были простроены мост через Королевское ущелье в США (1929 г., стальной подвесной мост с длиной основного пролета 286 м), мост через ущелье Сальгина в Швейцарии (1930 г., железобетонный арочный мост длиной 90 м), мост через р. Тару в Черногории (1940 г., железобетонный арочный мост с длиной основного пролета 114 м), мост Нью-Ривер в США (1977 г., стальной арочный мост с длиной основного пролета 518 м), виадук Польчевера в Италии (1978 г., мост с косыми опорами 81 м + 140 м + 81 м, виадук Мийо во Франции (2004 г., вантовый мост с наклонными опорами 204 м + 6 х 342 м + 204 м, вантовый мост Балуарте в Мексике (2012 г., вантовый мост с двойной опорой с длиной основного пролета 520 м), эстакадный мост Сан-Маркос в Мексике (2013 г., связный рамный мост 57 м + 98 м + 3 х 180 м + 98 м + 57 м) и др. Данные мосты занимают особое место среди мировых мостов, построенных через ущелья, как например, мост через Королевское ущелье в штате Колорадо, расстояние от проезжей части моста до поверхности реки составляет прим. 291 м, в период с 1929 по 2001 г. мост сохранял звание самого высокого моста в мире. Все эти мосты, проложенные через ущелья, в настоящее время являются прекрасным украшением автодорог и некоторые из них являются известными туристическими достопримечательностями.
Однако в настоящее время в Китае и за рубежом до сих пор не сформированы общепризнанные научные термины и направления исследований , касающиеся строительства мостов через ущелья. Зарубежные мосты, построенные через ущелья как в количественном отношении, так и в масштабах уступают мостам, построенным через ущелья в Китае, где они так сконцентрированно построены в некоторых районах и даже на одной и той же скоростной магистрали. Достижения китайских инженеров в строительстве мостов через ущелья привлекают внимание всего мира, китайские мосты, построенные через ущелья на этапах проектирования, строительства, эксплуатации и управления обладают своими особенностями, однако под влиянием таких ограничивающих факторов как геологических особенностей почв, рельефов местности, гидрологических особенностей , метеорологических процессов и др., степень изученности и глубины исследований относительно не развита, результаты соответствующих исследований разрозненно можно встретить на научных конференциях, специализированных форумах, периодических изданиях, посвященных вопросам строительства мостов и др.
В связи с этим, в данной главе даны определения терминов и технические особенности мостов, построенных через ущелья.
2. Определения терминов и технические особенности мостов, построенных через ущелья
2.1. Определения мостов, построенных через ущелья
Как и с мостами, прокладываемыми через реки, озера, заливы, построенные через ущелья мосты различаются ландшафтом и особенностями местности, через которые они прокладываются, то есть означают мосты, прокладываемые через ущелья. Мосты, прокладываемые через ущелья, как правило, обладают следующими техническими особенностями:
1. Большая глубина и степень уклона ущелья, большая высота моста.
2. Стесненные условия строительства, плохие условия транспортировки.
3. Практически отсутствуют условия возможности осуществлять строительство на поверхности водных преград.
2.2. Технические особенности мостов, построенных через ущелья
Из-за наличия таких ограничивающих условий в местности с горными ущельями, как ландшафт, особенности местности, геологические условия, природные условия и др., при проектировании, строительстве, техническом обслуживании и других аспектах в процессе строительства мостов, прокладываемых через ущелья, возникают существенные конструкционные и строительные отличия от мостов, прокладываемых через реки и заливы, которые главным образом проявляются в следующем.
Во-первых, большая глубина ущелий , обрывистые склоны, плохая устой – чивость откосов, плохие геологические условия влияют на определение выбора места, технических решений по типу моста, конструктивного исполнения, также непосредственно влияют на принятие решения по трассировке дороги.
Из-за требований , выдвигаемых к величине продольного уклона и горизонтального радиуса кривой линии маршрута на высококлассных дорогах, на участках, где представляется невозможным пройти через высокогорные участки и глубокие ущелья с помощью прокладки трассы с набором высоты либо с большим спуском, остается только вариант прокладки подвесного моста через преграду, чтобы автодороге преодолеть высокие горные ущелья. В целях сокращения протяженности туннелей , чаще всего применяется вариант строительства трасс с большей высотой над уровнем моря, поэтому высота мостовой балки мостов через ущелья обычно относительно большая, к примеру, высота проезжей части моста до поверхности воды моста Бэйпаньцзян в пр. Гуйчжоу составляет 565 м (скоростная автомагистраль G56 Ханчжоу – Жуйли). Увеличение высоты проезжей части моста эстетически улучшает конструктивное оформление и структуру мостов через ущелья. Для сплошных рамных мостов требуется использовать гибкость мостовых фундаментальных опор, чтобы отвечать требованиям деформации, вызываемой температурой , усадкой и ползучестью бетона, высокогорные ущелья обеспечивают естественные условия для требований строительства высоких опор сплошных рамных мостов, с помощью применения технологии консольного строительства, рациональных затрат строительства и современного строительного оборудования (подвесные подъемники) добиваются того, что данный тип мостов является самой широкой формой конструкции, применяемой в мостах через ущелья. В конструкции моста Бейпаньцзян на скоростной автомагистрали Люпаньшуй – Паньсянь в пр. Гуйчжоу, в целях улучшения несущей силы главных балок и уменьшения их собственного веса была использована модель балочной конструкции полых арочных перемычек. Двойные тонкостенные опоры являются обычно используемым типом конструкции промежуточных мостовых опор сплошных рамных мостов. По мере увеличения высоты промежуточных мостовых опор, с одной стороны, остро встает проблема обеспечения прочности, а с другой стороны, предоставляется возможность для новаторских конструкторских решений в архитектонике мостовых опор, применяются такие неординарные технические решения как чередование двойных тонкостенных опор с переменным сечением, одинарных опор, комбинированных промежуточных мостовых опор, соединяющих двойные тонкостенные опоры с одинарными опорами, а также промежуточных мостовых опор со сталежелезобетонными колоннами.
Высота главной опоры моста Хэчжан на скоростной автомагистрали Бицзе – Вэйнин в пр. Гуйчжоу составляет 195 м и является самой высокой мостовой опорой сплошных рамных мостов в мире. В конструкции данного моста использованы однокорпусные трехкамерные одинарные опоры с переменным поперечным сечением, в конструкции левой и правой основных балок используется одна совместная промежуточная мостовая опора. По сравнению с двойными тонкостенными опорами или комбинированными промежуточными мостовыми опорами данная конструкция не только увеличивает устойчивость промежуточных мостовых опор, но и экономит строительные затраты. В связи с требованиями по сейсмостойкости промежуточных мостовых опор на мосту Лабацзинь на участке скоростной автодороги Яань-Сичан в пр. Сычуань скоростной автодороги Б5 (Пекин – Куньмин) были использованы бетонные опоры со стальными трубами. На мосту Хутяохэ скоростной автодороги Чжэньнин – Шэнцзингуань скоростной автомагистрали Б60 (Шанхай – Куньмин), на мосту Бейпаньцзян на скоростной автомагистрали Люпаньшуй – Паньсянь в пр. Гуйчжоу использованы комбинированные промежуточные мостовые опоры. Китайские ученые провели теоретические исследования, касающиеся вопроса прочности мостовых опор, были выведены теоретические формулы расчета прочности в плоскости и вне плоскости комбинированных промежуточных мостовых опор и одинарных опор с переменным поперечным сечением, тем самым усовершенствовав теорию проектирования опор. Обрывистый рельеф и неблагоприятные геологические условия ущелья влияют на выбор типа моста, планировку пролета моста и соотношения боковых и средних пролетов. В случае размещения площадок строительства моста при переходе через ущелья с большой шириной , большой глубиной , с большими перепадами в рельефе местности по обеим сторонам ущелья, когда условия места не соответствуют либо не подходят для устройства пилонов, в основном используются подвесные мосты с односкатными (однопроходными) пролетами через ущелья, а на подвесных мостах через водные преграды из-за ровного рельефа местности чаще всего используется трехпролетная конструктивная схема с двумя пилонами либо многопролетная схема с несколькими пилонами. При проектировании подвесных мостов через ущелья обычно выбираются туннельные анкеры для уменьшения объема горных выработок и объема бетона. В некоторых случаях расположения моста допускается использовать условия рельефа местности, чтобы не строить главный пилон с одной стороны, в таком случае выполняется закрепление основного тягово-буксирного троса непосредственно в гору, как в сооружении моста через р. Цзиньша в ущелье Хутяохэ в пр. Юньнань, данный мост представляет собой однопролетный подвесной мост с пилоном со стальными фермами с высотой основного пролета 766 м. На берегу р. Лицзян установлен основной пилон и гравитационный анкер оттяжки, на берегу со стороны уезда Шангри-Ла не был использован вариант строительства основного пилона, а были установлены туннельные анкеры.
Такая же конструкция была применена при строительстве моста Тунмай , построенного на скоростной автодороге 318 Сычуань-Тибетского шоссе. В зависимости от условий рельефа местности, во избежание слишком большой высоты мостового пилона, при сооружении вантовых мостов обычно приходится выбирать сооружение большого среднего пролета и относительно небольших крайних береговых мостовых пролетов, поэтому соотношение средних пролетов и малых крайних мостовых пролетов придают мостам, прокладываемым через ущелья, особую форму вертикального расположения пилонов. В целях уравновешивания неравномерного веса балок со средними и крайними мостовыми пролетами, обычно используется сооружение вантового моста комбинированного типа со средними пролетами, построенными из стальных балок либо связующих балок, и крайними мостовыми пролетами из железобетонных балок. Как например, мост через р. Ячихэ в пр. Гуйчжоу представляет собой вантовый мост с двумя пилонами и с двойными плоскостными железобетонными балками, на крайних и средних мостовых пролетах использованы коробчатые балки из предварительно напряженного бетона и стальные фермы, соотношение крайних и средних пролетов составляет 0,275, схема пролетов 72 + 72 + 76 + 800 + 76 + 72 + 72 м. Чтобы приспособиться к условиям рельефа местности ущелья и уменьшить объем выемки выработки на откосах, в целях обеспечения соответствия требованиям охраны окружающей среды очень часто используется конструктивное выполнение моста с вертикальными и горизонтальными пилонами и асимметричным фундаментом. Высота ребра одной и той же опоры (пилона), размещенной на поперечном мосте, который упирается в крутой склон не может быть одинаковой , поэтому по степени жесткости два ребра опоры (пилона) будут несимметричны. Из-за большой разницы по глубине залегания свайных фундаментов несущей плиты пилона, размещенных на поперечном мосте, который упирается в крутой склон, часть свайного фундамента может быть обнажена, образуя специфический возвышенный свайный ростверк на мосту, например, как на мосту в горах Улиншань рядом с г. Чунцин на скоростной автодороге G65 (Баотоу – Маомин).
Вопрос прочности горных откосов всегда стоит на первом месте. Конструкция опор моста и фундамента моста напрямую связаны с прочностью основания моста на горных откосах и с безопасностью мостовой балки в целом. Если промежуточная мостовая опора моста, прокладываемого через ущелье, строится на откосах горной вершины либо горного хребта, сторона, прилегающая к дну ущелья, зачастую имеет высокую свободную поверхность. Устойчивость горного откоса может стать определяющим контрольным фактором выбора конструкции моста, прокладываемого через ущелье. В процессе проектирования фундамент и массив пород горных откосов примыкающих территорий часто рассматриваются вместе при выполнении оценки несущей способности и степени устойчивости, однако выполнять оценку устойчивости горных откосов очень сложно, учитывая сложный механизм деформации и разрушения горных откосов, как правило, в таких случаях не применяется распространенный метод расчета проверки прочности по «несущей способности» упругого полупространства. По этой причине госорганы пр. Гуйчжоу издали специальные правила, касающиеся выполнения проектных расчетов с учетом местных геологических особенностей . В настоящих правилах установлены требования разработки отчета по оценке устойчивости горных откосов на стадии предварительного проектирования, и только после прохождения проверки и положительной оценки отчета допускается последующее проектирование и строительство. По результатам проведенных исследований , на многих проектах строительства мостов через ущелья на территории Китая вносились изменения в выборе местоположения места, вносились изменения в технический проект конструкции типа моста и пролета моста из-за проблем с устойчивостью горных откосов. Например, мост через реку Димухэ скоростной автодороги 656 (Ханчжоу – Жуйли) в пр. Гуйчжоу (подвесной мост с пролетным строением со сквозными стальными фермами), в соответствии с топографическими условиями местности, на данном мосту не требовалось строительство пролета длиной 538 м, однако из-за проблем с устойчивостью берегового откоса, а также чтобы обеспечить безопасность моста, длина пролета была в итоге скорректирована до 538 м. Из-за проблемы с устойчивостью береговых откосов при строительстве моста через реку Лишуй в пр. Хунань пришлось внести изменения в маршрут прокладки скоростной дороги, таким образом, выбор маршрута и укладка трассы автодороги может изменяться из-за условий местоположения мостов, прокладываемых через ущелья.
Неблагоприятные геологические условия в районах ущелий , такие как наличие карстовых пород, частые оползни, наличие зон разломов, частые обвалы, селевые потоки и др. приводят к тому, что от некоторых проектов строительства мостов с хорошими экономическими показателями приходится отказываться из-за плохих геологических условий , что в свою очередь влечет за собой увеличение масштабов строительства. В процессе изучения вариантов проекта моста через реку Чжицзинхэ скоростной автодороги 650 Шанхай – Чунцин (ранее западная часть скоростной автодороги Шанхай – Чэнду) в пр. Хубэй , учитывая топографические особенности местности, был рекомендован вариант подвесного моста со стальными фермами без пилонов, в данном проекте были использованы топографические особенности местности и рекомендовано строительство поворотной конструкции пролета (седла) с натяжными фермами, промежуточные опоры не устанавливались, проект обладал хорошими экономическими показателями и с относительно хорошими условиями для проведения строительных работ. Однако из-за отсутствия геологических условий для установки крупногабаритных туннельных анкеров и крупномасштабных гравитационных анкеров, в итоге был выбран вариант строительства арочного моста из сталежелезобетонной конструкции 430 м. Из-за развития карстовых пород на закарстованных участках в процессе выполнения проектных изысканий возникают сложности из-за ограниченной возможности бурения большего количества скважин и расположенности точек бурения, в таком случае иногда бывает трудно достоверно выявить геологические условия в местах строительства мостовых опор, что в дальнейшем может привести к внесению изменений в проект конструкции во время строительства и порой даже к изменениям планировки пролета моста. При строительстве свайного фундамента для промежуточной мостовой опоры моста Бейпаньцзян на скоростной автомагистрали Люпаньшуй – Паньсянь в пр. Гуйчжоу была обнаружена карстовая пещера с 5 слоями. Поскольку объем карстовых пещер достигал 200 000 куб. м, стоимость засыпки каверзностей была слишком высокой , поэтому конструкцию пришлось изменить, и в итоге была утверждена конструкция мостового пролета, которая состояла из 5 * 30 м Т-образной балки из предварительно напряженного бетона + 82,5 + 220 + 290 + 220 + 82,5 м непрерывной жесткой рамы с наклонной мостовой опорой из предварительно напряженного бетона + 4 х 30 м балки из предварительно напряженного бетона.
Во-вторых, стесненные условия строительных площадок, плохие условия транспортировки грузов и множество других ограничивающих факторов напрямую влияют на выбор проекта строительных работ.
(1) Стесненные условия строительных площадок не позволяют выполнять механизированные крупномасштабные строительные работы. Из-за обрывистого рельефа района ущелья очень сложно доставить до строительных площадок крупномасштабное механическое оборудование и технику (на площадки строительства промежуточных мостовых опор, мостовых устоев, фундамента и т. д.), особенно сложно доставлять и устанавливать технику для строительства инфраструктурных объектов, и порой на местах строительства фундамента некоторых мостовых участков приходится выполнять ручную разработку. Существуют большие трудности, связанные со строительством площадок по изготовлению конструкций балок, часто требуется выполнение очень масштабных земляных работ для строительства насыпей , а также выполнение вспомогательных мероприятий по обработке откосов и их укреплению, при этом также существуют стесненные условия строительных площадок и небольшие площади для хранения балок, что создает трудности при выполнении крупномасштабных централизованных работ по сборке элементов моста, требуется по нескольку раз перевозить предварительно изготовленные балочные плиты, что увеличивает затраты труда, материалов и механизмов. При строительстве некоторых мостов из-за стесненных условий строительства можно использовать только метод изготовления балок на самом мосту, то есть сначала балки (плиты) предварительно изготавливаются на рабочей площадке, и после того как возведен мост, на мосту выполняется последующее изготовление и укладка оставшихся балочных плит.
(2) Большая протяженность временных строительных подъездных дорог, большое количество временных несущих конструкций , поэтому необходимо многократно выполнять перевозку строительных материалов и оборудования. Из-за различных нормативных и других ограничений при выборе маршрута трассы скоростных автодорог многие мосты через ущелья находятся далеко от государственных, провинциальных и дорог местного значения, поэтому требуется прокладывать временные подъездные дороги протяженностью от нескольких километров до десятков километров, по которым осуществляется транспортировка материалов, рабочего персонала и техники к каждой рабочей площадке возведения моста. Объем разработки при строительстве временных подъездных дорог и оградительных сооружений очень большой . При невозможности или нецелесообразности строительства временных подъездных дорог, строительные материалы и оборудование приходится перевозить только ручным способом, на лошадях, подъемных кранах или натяжных канатных сооружениях. В некоторых случаях приходится разбирать строительное оборудование, которое потом перевозится с помощью рабочего персонала и кранов на место строительства промежуточных мостовых опор (мостовых устоев), а затем снова собирать и только таким образом осуществлять строительство.
(3) Отсутствие либо частичное отсутствие условий выполнения строительных работ на поверхности водных преград.
Несмотря на то, что некоторые мосты, прокладываемые через ущелья, имеют переходы через реки, однако зачастую на таких участках существуют неблагоприятные условия при переходах через реки, такие как высокая скорость течения реки, стремительное и бурлящее течение, отсутствие условий либо невозможности для выполнения судоходных перевозок, в таких случаях представляется невозможным выполнять транспортировку мостовых прогонов, либо арочных сегментов вантовых мостов, подвесных мостов сталежелезобетонных арочных мостов на водном транспорте, как при строительстве мостов через водные преграды (широкие реки, озера и заливы). В таких случаях приходится изготавливать сегменты моста только на заводе, которые потом транспортируются в разобранном виде на строительную площадку с последующей сборкой и установкой . Несмотря на то, что на местах строительства некоторых мостов, прокладываемых через ущелья имеются условия на водной поверхности, например, мост через реку Мэндун в пр. Хунань, мост через реку Бэйпаньцзян в пр. Гуйчжоу, мост через реку Цзиньшацзян в пр. Юньнань и др., однако из-за стремительного и бурлящего течения реки строительство на водной поверхности практически невозможно. Несмотря на то, что на местах строительства некоторых мостов, прокладываемых через ущелья, имеются условия выполнения строительных работ на водной поверхности, однако из-за невозможности выполнения судоходных перевозок, также нельзя выполнять строительство на водной поверхности, например, при строительстве моста через реку Уцзян скоростной автодороги Даочжэнь – Вэнъань Б69 (скоростной автодороги Иньчуань – Байсе), где река могла использоваться только для переправки на пароме рабочего персонала.
(4) Применение разнообразных методов строительства.
Стесненные условия на строительных площадках и рабочих поверхностях в районе горных ущелий усложняют процесс строительства мостов, но также создают условия для преемственности и новаторства строительных технологий , мастерства и методов строительства. Метод толкания и метод канатного подъема являются эффективными методами строительства при установке стальных сегментов. Мост через реку Хуншуй в пр. Гуйчжоу представляет собой вантовый мост из железобетонных связующих балок. Установка основной и краевых балок, которые расположены на участке моста со стороны пр. Гуйчжоу, производилась методом толкания, строительство основной и краевых балок со стороны моста на участке пр. Гуанси осуществлялось путем заливки на месте работ с помощью высокого каркаса, транспортировка и монтаж стальной основной балки среднего пролета и предварительно изготовленного настила моста осуществлялись с помощью канатного подъемника. Основной тягово-буксирный трос кабельной системы временно размещается на верхней поперечной балке пилона вантового моста, таким образом не только сокращается необходимость сооружения тросовой системы для основного пилона, но также экономятся затраты на выполнение временных мероприятий . При строительстве моста Айчжай на скоростной автодороге 665 (скоростная автодорога Баотоу – Маомин) в пр. Хунань был разработан метод перемещения балки с помощью рельсового троса. Рельсовый трос поддерживается на ванте моста с помощью подвески, образуя простой параллельный рельсовый трос, балка жесткости с помощью каретки транспортирующей балки подвешивается на рельсовом тросе, с помощью тяговой системы сегменты балки по частям перевозятся по рельсовому тросу до середины пролета, затем поднимаются и устанавливаются на место. При строительстве моста через реку Димухэ в пр. Гуйчжоу при монтаже сегментов стальной фермы применялся метод сборки и кранового подъема только на одном берегу, для этого было специально разработано подвесное устройство, вращающееся в воздухе, тросовый подъемник устанавливался внутри пилона, во время подвески сегмента стальной фермы для участка моста на противоположном берегу использовалось воздушное вращающееся подвесное устройство, которое выполняет горизонтальное вращение секции балки на 90°, таким образом избегается помеха, которую создает вант моста, затем секция балки опускается для последующего монтажа. С помощью односторонней канатной системы выполнялся монтаж стального настила моста раздельными полотнами (участками), тем самым был решен вопрос нехватки места для сборки и монтажа секций и частей .
В-третьих, проектирование моста через ущелье должно быть тесно связано с процессом строительства. При проектировании моста, прокладываемого через ущелье, необходимо в полной мере учитывать такие факторы, как осуществимость и степень сложности строительства, стоимость строительства и т. д. При строительстве вантовых и подвесных мостов через водные преграды (реки, озера и заливы), как правило, выбирают плоские стальные балки коробчатого сечения с хорошей ветроустойчивостью, которые транспортируются по воде к месту установки, затем с помощью крановых установок, расположенных на проезжей части моста выполняется стыковка и установка секций балки. Однако если при строительстве моста через ущелье отсутствуют условия для выполнения рабочих операций на воде, на этапе проектирования необходимо полностью учитывать условия площадки для обработки и условия транспортировки стальных (ферменных) балок, поэтому в конструкции прогона моста (для подвесных и вантовых мостов), как правило, применяются стальные фермы. Поскольку мост Лунцзян на скоростной автодороге Баошань – Тэнчун в пр. Юньнань строился уже на построенных участках автодороги, располагавшихся на разных берегах реки, можно было использовать скоростную автодорогу для транспортировки стальных балок коробчатого сечения. Данный мост является одним из двух подвесных мостов со стальными коробчатыми балками, проложенных через ущелье в Китае (другой – мост Пули на скоростной автодороге Пули – Сюаньвэй в пр. Юньнань, подвесной мост с основным пролетом 628 м). Стальные ферменные балки вантовых мостов и подвесных мостов изготавливаются на заводе в виде сжатоизогнутых элементов конструкции и пластинчатых модулей , затем они транспортируются автотранспортом на строительную площадку, где выполняется сборка и монтаж, таким образом решается проблема осложненной транспортировки длинных и крупных деталей на автодорогах. Протяженность тросовой системы вантовых мостов с большой длиной пролета очень большая, диаметр катушечного диска тросовой системы, на котором используются параллельные стальные тросы, очень большой , поэтому транспортировка по узкой и извилистой временной строительной дороге очень осложнена и существуют очень высокие риски в области безопасности. Если главный пролет вантового моста превышает 400 м, используется скрученная прядевая арматура для продевания тросов на месте, чтобы сформировать целую связку вантовых тросов. Данная концепция, основанная на «разделении на части с последующей сборкой частей в единое целое» в полной мере реализуется при проектировании и строительстве мостов через ущелья.
В-четвертых, в горных ущельях существует сложная ситуация с долинными ветрами, проблема ветровой вибрации мостов, прокладываемых через ущелья, стоит очень остро, существующие на сегодняшний день теоретические исследования и технические нормативы отстают от опыта инженерной практики.
Районы с горными ущельями обладают очень сложным рельефом, поскольку ветровое поле сильно зависит от условий локального рельефа, ветровая нагрузка в ущелье формируется особым образом, поэтому ветровая среда в ущельях сильно отличается от окружающей среды рек, озер и морей . Несмотря на то, что действующие нормативы, касающиеся требований по ветроустойчивости, обеспечивают проектные нормы по скорости ветра с учетом поправок из-за ландшафта и особенностей местности, но из-за отсутствия метеорологических данных в районе ущелья, представляется очень сложным точно отразить реальную ситуацию с ветровым полем на месте расположения моста, прокладываемого через ущелье, используя данные по скорости ветра, полученные по замерам метеостанций , располагающихся на открытой местности. 19 мая 2016 г. прим, в 17:40 рядом с мостом через реку Балинхэ в пр. Гуйчжоу скоростной автодороги Б60 (скоростная автодорога Шанхай – Куньмин) прошел сильный ураган. Мгновенная максимальная скорость ветра достигла 34,4 м/с, что намного превысило расчетную скорость ветра 25,9 м/с, в результате чего произошел обрыв оптического кабеля связи и кабелепровода на мосту и остановка транспортного сообщения почти на 5 часов. Специальное исследование, касающееся вопроса долинных ветров в ущельях было проведено на мосту через реку Дадухэ на скоростной автодороге Яань – Кандин в провинции Сычуань, результаты данного исследования показали, что ветровая среда на месте возведения моста, в основном, состоит из ветра 1- й категории, вызванного локальными потоками тепловой энергии, и ветра П-й категории, который формируется под воздействием общих климатических условий , ветровая среда, образуемая локальными потоками тепловой энергии, не была выявлена в других местах возведения мостов через ущелья, что подчеркивает сложность определения ветровой среды в горных ущельях. На проекте строительства моста Бейпаньцзян на скоростной автомагистрали Чжэнь – Шэн в пр. Гуйчжоу (подвесной мост со стальными фермами) с главным пролетом 636 м, по результатам исследования ветроустойчивости были внесены изменения в конструкцию мостового настила: настил моста, состоящий из отдельного левого и правого полотна в первоначальном проектном решении был изменен на один цельный настил,также в целях усиления ветроустойчивости конструкции моста была добавлена центральная балластировочная плита.
В-пятых, наличие больших сложностей при выполнении технического обслуживания мостов через ущелья.
Очень сложные природные условия, географическая среда и метеорологические условия местности расположения моста через ущелье создают большие трудности при проведении ремонтно-обслуживающих работ в период эксплуатации. Сильные ветры в течение всего года вызывают проблемы с вибрацией и усталостью в конструкции мостовых тросов. Частые изменения температуры воздуха, резкое падение температуры воздуха, выпадение снега, обледенение, переохлажденный дождь и другие погодные условия, не только влияют на безопасность движения автотранстпорта, но также влияют на долговечность самой конструкции моста. В ходе выполненных проверок и осмотров были выявлены случаи повреждений высокопрочных болтов на стальных фермах на нескольких подвесных мостах. На мостах через ущелья построено большое количество высоких башен и опор, очень большие размеры пролетов, под проезжей частью моста на расстоянии десятков или даже сотен метров расположено дно долины или поверхность водных преград, поэтому проведение технических осмотров сопряжено с большими трудностями, риском и большими объемами работ. Оползни, обвалы, сели и другие неблагоприятные геологические катастрофы всегда представляют собой скрытые опасности, которые ставят под угрозу безопасность мостовых балок. Выполнение своевременного обнаружения, предупреждения и ликвидации последствий возможных стихий – ных бедствий являются сложными задачами в процессе технического обслуживания и управления эксплуатацией автодорожных мостов через ущелья.
3. Текущая ситуация с автодорожными мостами, проложенными через ущелья в Китае
3.1. Количество сооружений и географическое размещение мостов через ущелья
По неполным статистическим данным, по состоянию на конец 2016 г. в 17 провинциях, автономных районах и городах центрального подчинения Китая было построено и находятся на этапе строительства около 378 мостов через ущелья (за исключением мостов через ущелья, по которым завершено проектирование, но еще не начаты строительные работы). Из них 257 сплошных рамных мостов, 75 арочных мостов, 26 вантовых мостов и 20 подвесных мо стов. Являясь основными составными частями горных каскадов второго уров ня тектонического рельефа Китая горные районы пр. Хунань, Хубэй , Сычуань, Юньнань-Гуйчжоуское нагорье, прилегающие горные районы Сычуаньской котловины и Лессовое плато на севере пр. Шэньси относятся к основным ре гионам расположения автодорожных мостов через ущелья. Помимо этого, в Гуанси-Чжуанском автономном районе, в пр. Ганьсу, Тибете, в пр. Цинхай , ав тономном районе Синьцзянь, в пр. Хэнань, Шаньси, Фуцзянь и других провин циях и автономных регионах было построено небольшое количество мостов через ущелья.
Географическое распределение мостов через ущелья определяется ланд шафтом и особенностями местности строительства моста, плотностью насе ления и планированием сети скоростных автомагистралей . Провинции Юнь нань, Гуйчжоу, Сычуань, г. Чунцин, Хунань, Хубэй , Шэньси и другие провинции и города относятся к густонаселенным регионам, в рельефе местности пре обладают горные районы, резко расчерченный горный рельеф, повсеместно распространены ущелья и рвы, они всегда относились к регионам с относи тельно отсталой транспортной инфраструктурой и медленным экономическим развитием. По мере развития строительства скоростных автодорог, протянув шихся в труднодоступных высокогорных районах страны, особенно в рамках реализации государственной политики «Освоение Запада», направленной на ускоренное развитие западных регионов страны, все это способствовало строительству и развитию мостов через ущелья.
Территориальное распределение автодорожных мостов, построенных через ущелья в Китае
Как видно из приведенной выше диаграммы, пр. Гуйчжоу, административный район Чунцин и пр. Сычуань являются провинциями с наибольшей концен трацией автодорожных мостов через ущелья в Китае, поскольку общее количе ство построенных мостов через ущелья в данных трех провинциях составляет более 60% от общего количества построенных в стране мостов, больше всего таких мостов в провинции Гуйчжоу, на ее долю приходится более трети от об щего количества мостов через ущелья Китая. Хотя пр. Юньнань также отно сится к карстовым геоморфическим регионам, и расположенный на западе пр. Юньнань хребет Хэндуань и оба берега реки Цзиньшацзян являются типичны ми гористыми районами с ущельями, она немного отличается от пр. Гуйчжоу тем, что население западного и северного регионов Юньнани относительно небольшое и относительно слабое экономическое развитие, поэтому количество мостов через ущелья в пр. Юньнань меньше, чем в соседней пр. Гуйчжоу.
Такая разница в количествах в дальнейшем будет уменьшаться по мере развития строительства скоростных автодорог в пр. Юньнань, в течение «13- й пятилетки» в пр. Юньнань планирует построить скоростные автодороги протяженностью более 3000 км, и ожидается, что количество мостов через ущелья значительно увеличится. В отличие от горных районов с ущельями с глубокими и крутыми склонами, Лессовое плато, расположенное в северной части пр. Шэньси представляет собой рельеф местности, изрезанный потоками рек на плато, овраги, равнины, горные цепи и хребты, плоскогорье представляет собой относительно цельный геоморфологический рельеф с просторными и плоскими возвышенностями, поэтому мосты через ущелья в пр. Шэньси в основном располагаются в Лессовом плато на севере Шэньси, количество мостов относительно большое.
3.2. Основные типы мостов, прокладываемые через ущелья
Если говорить о типах мостов, в Китае наиболее предпочтительным при выборе типом моста для прокладки через ущелья является сплошной рамный мост из предварительно напряженного бетона, при строительстве которых выработана типовая технологии, обладающая относительно экономичной стоимостью строительства. Цифры статистики показывают (рисунок справа), что количество сплошных рамных мостов превышает половину от общего количества автодорожных мостов через ущелья. Сплошные рамные мосты с главным пролетом с длиной в пределах 250 м обладают очевидными преимуществами, связанными с возможностью выполнения строительных работ методом навесного бетонирования с помощью подвесных подъемников, при данном методе можно проводить высотные работы, с меньшим количеством строительной техники, он отличается очень рациональными технико-экономическими показателями.
По количеству арочные мосты уступают только сплошным рамным мостам, их количество составляет почти 20% от общего числа, особенно арочные мосты из сталежелезобетона с длиной пролета 200 – 500 м, обладающие сильной конкурентоспособностью. С точки зрения технических характеристик, арочные мосты являются пригодным для строительства в горных районах типом моста, обладающих наработанной технологией строительства, разумной строительной стоимостью, красивой формой , низкими затратами по техническому обслуживанию в последующий период, хорошо вписываются в пейзаж горной местности. Важная причина относительно частого применения данного типа моста заключается в том, что арочный мост из сталежелезобетона может быть построен методом навесной сборки и монтажа, при котором кольца главного арочного пролета весом в несколько тысяч тонн разделяются на сегменты весом нескольких сотен тонн и монтируются с помощью навесной сборки, таким образом отвечая требованиям государственных норм по предельной нагрузке навесного подъемного оборудования и также реализуя безопасное и быстрое строительство арочных мостов с большой длиной пролета. Применение таких технологий , как устройство внутреннего фланцевого соединения между сегментами, метод диагонального подвешивания на подъемнике, метод одноразового натяжения троса и др., обеспечивают безопасное и быстрое строительство многосегментной конструкции. После образования свода арки, стальные трубы на последующем этапе строительства используются в качестве шаблона (опалубки) для заливки бетона, которые на этапе возведения моста образуют совместную несущую силу с бетоном внутри стальных труб, поэтому не требуется использование подвесных опорных подвесок (или подвесных подъемников), необходимых при строительстве бетонных арочных мостов, таким образом решаются трудности при строительстве крупнопролетных мостов через ущелья в горных районах. Однако при строительстве арочных мостов предъявляются очень высокие требования к сооружению фундамента, если длина пролета превышает 500 м, строительные работы становятся единственным звеном, на котором осуществляется управление за строительством всего проекта, сложные и тяжелые условия строительства в районе ущелья подчеркивают данное противоречие. Статистические данные также очень хорошо отражают степень предпочтительности строительства арочных мостов через ущелья на автодорожных проектах.
Вантовые мосты и подвесные мосты представляют собой два типа мостов, больше всего подходящих для пересечения глубоких и больших по размерам ущелий , тем самым не требуется строительство высоких опор и башен, например, при строительстве моста через реку Сидухэ в пр. Хубэй , моста Айчжай в пр. Хунань, моста через р. Балинхэ в пр. Гуйчжоу, моста через р. Циншуйхэ в пр. Гуйчжоу, моста через р. Лунцзян в пр. Юньнань и др. был использован проект подвесного моста для пересечения таких больших ущелий . При строительстве моста через реку Бэйпаньцзян на скоростной автодороге Ханчжоу – Жуйли в пр. Гуйчжоу был применен проект вантового моста.
Мосты автомобильных дорог, построенных через горные ущелья в Китае
3.3. Особенности географического расположения мостов, прокладываемых через ущелья
На рисунке справа показаны особенности регионального расположения автодорожных мостов через ущелья в Китае по конструкционным типам мостов, из которого видно, что ландшафт и особенности местности ущелья играют решающую роль в выборе конструкционного типа моста. Ущелья Юньнань-Гуйчжоуского нагорья, расположенного на землях нескольких провинций , разбросаны по всей территории, здесь и величественный большой каньон на реке Нуцзян, большой каньон на реке Цзиньшацзян в пр. Юньнань, ущелье у реки Балинхэ, ущелье у реки Бейпанцзян и каньон у реки Ячихэ в пр. Гуй – чжоу, а также многочисленные небольшие ущелья. За исключением нескольких широких и глубоких ущелий , остальные представляют собой относительно плоские каньоны, поэтому имеется необходимость строительства длиннопролетных вантовых мостов и подвесных тросовых мостов, также имеются места с природными условиями, позволяющими строительство сплошных рамных мостов, что является одной из причин наибольшего количества возведенных рамных мостов. В горном районе Улин, расположенном на стыке пр. Хунань, Хубэй и района Чунцин, также построено большое количество мостов через ущелья, например, на скоростной автодороге Б50 Шанхай -Чунцин общая протяженность участка автодороги от Бадун до Личуань (Юйцюанькоу) (старое название скоростная автодорога Хужунси) в пр. Хубэй составляет 320 км, но на данном участке автодороги подряд построено несколько мостов: мост Вэй – цзячжоу (сплошной рамный мост), мост через реку Лунтань (сплошной рамный мост), мост Телопин (вантовый мост), мост через реку Сыдухэ (подвесной мост), мост через реку Есаньхэ (сплошной рамный мост), мост через реку Машуйхэ (сплошной рамный мост), мост через реку Чжицзинхэ (арочный мост из стали и бетона), мост Сяохэ (арочный мост из стали и бетона), мост через реку Цинцзян (вантовый мост) и многие другие мосты, проложенные через ущелья. На участке скоростной автодороги Б65 от п. Цяньцзян в районе Чунцин до уезда Цзишоу, провинции Хунань (скоростная автодорога Баотоу – Маомин) также расположены несколько мостов через ущелья: мост Яньсигоу (сплошной рамный мост), мост Сишахэ (арочный мост из стали и бетона), мост Улиншань (бетонный вантовый мост), мост Айчжай (подвесной мост) и многие другие мосты. Рельеф местности Лессового плато на севере пр. Шэньси в целом плоский и открытый , ущелья расположены одиночно и отличаются плохими геологическими условиями и устойчивостью склонов, которые не очень подходят для строительства арочных и подвесных мостов. С учетом всех аспектов, таких как стоимость строительства, степень трудности строительных работ, техническое обслуживание и т. д., сплошной рамный мост стал единственным типом мостов, построенных через ущелья высокогорья северной части пр. Шэньси. Плато в Западной Сычуань является переходной полосой , протянувшейся от Сычуаньской котловины до Цинхай -Тибетского нагорья, данная зона отличается большими возвышенностями, в основном с сильно изрезанными речными долинами, к тому же в данной зоне часто происходят бедствия геологического характера, относится к районам с высокой сейсмической интенсивностью и частотой . Несмотря на большую площадь Сычуань-Тибетского плато, данные территории относятся к малонаселенным и труднодоступным для подъезда районам, поэтому количество мостов через ущелья не большое, в основном здесь преобладают сплошные рамочные мосты и арочные мосты с относительно хорошими сейсмическими характеристиками.
Особенности территориального распределения автодорожных мостов, построенных через ущелья в Китае по конструкционным типам
Важными показателями, по которым определяют тип моста, длину пролета и масштабов строительства моста через ущелья являются глубина, ширина и геологические условия ущелья. Результаты исследований показали, что на участках с широкими ущельями, глубокими долинами и крутыми склонами в основном используются вантовые мосты или подвесные мосты с большими пролетами, такие как мост через реку Ячихэ в пр. Гуйчжоу (главный пролет 800 м) и мост Бэйпаньцзян, расположенный на участке автодороги от Бицзе до Дугэ на границе пр.Юньнань и Гуйчжоу (главный пролет 720 м) и другие вантовые мосты, а также мост через р. Лунцзян в пр. Юньнань (главный пролет 1196 м), мост Айчжай в пр. Хунань (главный пролет 1176 м), мост через р. Циншуйхэ в пр. Гуйчжоу (главный пролет ИЗО м) и мост через р. Балинхэ (главный пролет 1088 м), мост через р. Сыдухэ в пр. Хубэй (главный пролет 900 м) и др., на которых использована конструкция однопроходных подвесных мостов, прокла дываемых через ущелья. При наличии в местах расположения моста глубоких ущелий с отвесными уклонами, с шириной прим. 200 – 500 м с хорошими геологическими условиями, как правило, строят арочные сталежелезобетонные мосты с большими пролетами, такие как мост через реку Чжицзин в пр. Хубэй (главный пролет 430 м),мост через реку Цзунсихэ в пр. Гуйчжоу (главный про лет 360 м), мост Сяохэ в пр. Хубэй (главный пролет 336 м), мост Сянхуоянь в пр. Гуйчжоу (главный пролет 300 м) и мост Дасяоцзин в пр. Гуйчжоу (главный пролет 450 м), который находится в стадии строительства. Кроме этого, также часто строятся сплошные рамные мосты (на верхнем рисунке справа). Длина главного пролета сплошных рамных мостов, как правило, находится в пределах 250 м, чаще всего длина пролета составляет 120 – 200 м, высота опор обычно составляет 80 – 150 м. Главный пролет на мосту Бейпаньцзян на скоростной автомагистрали Люпаньшуй – Паньсянь в пр. Гуйчжоу длина главного пролета составляет 290 м, чтобы уменьшить поперечное сечение главной балки, была использована полая непрерывная система с жесткой рамой , которая по существу представляет собой комбинированный балочно-арочный мост. Из-за ограниченных условий ландшафта, особенностей местности и долинных ветров при строительстве моста Хэчжан в пр. Гуйчжоу была применена четырехпролетная конструкция со сплошной жесткой рамой с опорами высотой до 195 м, мост Хэчжан считается первым в мире рамным мостом с самыми высокими опорами.
Сроки строительства мостов через ущелья на участках автодорог в Китае тесно связаны с общими сроками строительства скоростной автодороги и государственной стратегией развития. На нижнем рисунке справа показана схема размещения мостов через ущелья на участках автодорог в Китае с разбивкой по годам постройки, на схеме можно видеть, что строительство высококлассных автомагистралей и скоростных автодорог от восточных прибрежных рай – онов до горных районов, расположенных в центральных и западных регионах страны, началось до 90-х гг. 20 века, количество мостов через ущелья на автодорогах Китая было относительно небольшим.
Распределение по пролетам автодорожных мостов через каньоны в Китае
Распределение по годам автодорожных мостов через каньоны в Китае
После 90-х гг. количество мостов, построенных через ущелья, стало постепенно увеличиваться, большинство из них были арочными мостами, например, мост через реку Цзянцзихэ, построенный в 1995 г. в пр. Гуйчжоу представляет собой комбинированный арочный мост с длиной основного пролета 330 м с фермами из предварительно напряженного бетона. В 2000 г. после начала реализации государственной политики «Освоение Запада», направленной на ускоренное развитие западных регионов страны стало быстро увеличиваться количество мостов через ущелья на участках автодорог, в основном строились сплошные рамочные и арочные мосты с длиной пролетов от 120 до 500 м. Мост через реку Балинхэ в пр. Гуйчжоу, построенный в 2009 г., является первым в Китае автомобильным мостом через ущелье с пролетом более тысячи метров. После 2010 г. государство еще больше увеличило динамику строительства транспортной инфраструктуры в западных регионах, один за другим были построены несколько автодорожных мостов через ущелья с длиной пролета 500 м и более 1000 м, что свидетельствовало о том, что строительство скоростных автодорог в полной мере вошло в ключевой этап соединения к транспортной системе горных районов и высокогорья, расположенных в центральных и западных регионах страны, также это отражало быстрый и непрерывный прогресс Китая в технологиях строительства мостов через ущелья, тем самым закладывая прочную основу для реализации величественной цели создания «высокоскоростных равнин».
4. Несколько пунктов, касающихся полученных представлений и рекомендаций
Во-первых, строительство такого количества мостов через ущелья является неизбежным результатом масштабного строительства дорог высокого качества в стране. После предпринятой в Китае политики реформ и открытости, строительство высококлассных автодорог, особенно скоростных автодорог, способствовало строительству большого количества крупных мостов мирового уровня, что в свою очередь дало огромный импульс экономическому и социальному развитию страны, что также проявилось в повышении уровня совокупной мощи государства и ускорении научно-технического прогресса в области строительства мостов в Китае. В последние годы, с продвижением реализации инициативы «Один пояс – один путь», строительства экономического пояса реки Янцзы и государственной политики «Освоение Запада», скоростные автодороги, являясь ведущей транспортной инфраструктурой , в ускоренном темпе простираются в центральные и западные регионы страны. Колебания рельефа в центральных и западных регионах Китая очень большие, повсюду высокие горы, мощные горные хребты и глубокие ущелья, поэтому чтобы прокладывать автомагистрали для дальнейшего развития транспортных линий невозможно не принимать во внимание горы и ущелья. Чаще всего в глубоких ущельях отсутствуют условия для установки промежуточных мостовых опор (пилонов), поэтому пересечь ущелья можно только воздвигая очень большие мосты, в связи с чем было построено большое количество уникальных мостов через ущелья, не имеющих аналогов в мире, что в свою очередь способствовало развитию и техническому прогрессу в деле строительства мостов через ущелья в Китае.
В государственном среднесрочном и долгосрочном плане развития инфраструктуры автомобильного движения «План развития сети государственных шоссейных дорог (2013 – 2030 гг.)» установлены требования для дальнейшего увеличения динамики поддержки приграничных районов и бедных районов, расширения охвата дорожными сетями западных регионов страны. В настоящее время в Китае в процессе строительства находятся 24 автодорожных моста через ущелья, определенное количество проектов строительства мостов через ущелья находится на стадии утверждения и проведения тендера. Можно предвидеть, что количество мостов через ущелья на участках скоростных автодорог в Китае будет непрерывно расти, разработанные в процессе строительства новые типы конструкций , новаторские технологии строительства и более масштабные проекты мостов через ущелья непременно откроют новую главу в строительстве мостов в Китае.
Строительство мостов через горные районы сократило разрыв между транспортными инфраструктурами центрально-западных регионов и прибрежных районов страны, стимулировало реализацию задач по созданию «высокоскоростных равнин» в горных районах, что в свою очередь, несомненно, будет способствовать региональному промышленному развитию и освоению ресурсной базы, и в дальнейшем будет содействовать скоординированному устойчивому развитию региональной экономики и ускорять темпы программы ликвидации бедности в неблагополучных районах, содействовать национальной солидарности, тем самым внося вклад во всестороннее построение среднезажиточного общества.
Во-вторых, необходимо осуществлять проектирование мостов через ущелья с учетом местных условий , нельзя слепо стремиться к достижению рекордов по показателям длины, высоты пролета и т. д. Опасные топографические условия местности, сложное геологическое строение, изменчивые погодные условия, хрупкая экологическая среда и трудные условия для проведения строительных работ являются факторами, влияющими на проектирование конструкции моста через ущелье. При разработке проекта моста через ущелье необходимо ломать устоявшееся традиционное мышление в практике инженерного строительства, вырабатывать новую концепцию ориентированности на людей , безопасности и гармонии, экономии ресурсов и экологичности, всесторонне учитывать такие условия как глубина, ширина ущелья, геологические, гидрологические, погодные условия ущелья, грамотно выбирать местоположение моста для обеспечения безопасности. При условии удовлетворения требованиям принципов по безопасности, соответствия установленным требованиям, экономичности, эстетичности, охраны окружающей среды и долговечности, рационально выбирать типы мостов и конструкции мостового пролета, осуществлять проектирование мостов через ущелья с учетом местных условий , не следует слепо стремиться к достижению рекордов по показателям длины пролета, высоты опор и т. д. и не следует выступать с новыми идеями ради формальных инноваций .
На переходах через обрывистые и глубокие ущелья шириной около 1000 м преимущественным типом моста является подвесной мост; при строительстве моста через ущелье шириной более 500 м относительно целесообразным типом моста является конструкция вантового моста со стальными фермами или вантового моста с ферменными связующими балками. При строительстве моста через ущелье шириной менее 500 м и хороших геологических условий более подходящими типами мостов являются арочные мосты и рамные мосты на наклонных опорах. При строительстве моста через ущелье небольшой ширины, без водных препятствий либо с небольшим водным препятствием применяется проект конструкционного решения строительства мостовых опор в центре ущелья с расчетом одной промежуточной опоры на два пролета, что позволяет избежать трудностей , связанных с «выполнением экскаваторных работ на площадках» и устройством опор моста на крутых склонах, тем самым минимизируется возможный вред окружающей среде, повышается безопасность строительства, уменьшается объем работ по укреплению склонов, снижается вероятность вызываемых проведением строительных работ бедствий геологического характера. Для относительно ровных ущелий может быть выбрана неразрезная конструкция моста с большим пролетом, с опорами соответствующей высоты, чтобы отвечать требованиям проектирования.
Строительная организация должна принимать участие на ключевых этапах проектирования моста, специалисты обеих сторон должны рационально разрабатывать проектные решения, касающиеся конструкции моста и плана строительства с учетом всех условий строительства и транспортировки, а также совместно выполнять проектирование моста. Таким образом, можно не только справится с проблемой недостатка опыта в строительстве у проектировщиков, но и позволит строительно-техническим специалистам лучше понять замысел проекта, а также поможет избежать необходимости внесения изменений в проект конструкции и увеличения капиталовложений из-за нерациональных технических решений по проекту строительства, разработанных проектировщиками.
В-третьих, необходимо обращать внимание вопросу применения на проекте достижений научно-технического прогресса в области строительства мостов через ущелья, включая инновации и краткое изложение методов, технологий , материалов и оборудования строительства. Применение достижений научно-технического прогресса в проекте строительства моста через ущелье имеет большое значение для преодоления строительных проблем, обеспечения безопасности проводимых строительных работ и повышения качества строительства, представляет из себя важный фундамент, на котором будет осуществляться непрерывное развитие мостостроения в Китае. В процессе строительства мостов через ущелья в Китае было разработано большое количество инновационных методов и технологий строительства, что способствовало развитию новых видов оборудования, техники и материалов, также был наработан большой опыт применения традиционных методов строительства при строительстве мостов через ущелья. Разработанный при строительстве моста Айчжай метод перемещения балки по рельсовому тросу, разработанный при строительстве моста через реку Димухэ метод навесного разворота сегментов, разработанный при строительстве моста через реку Ячихэ метод канатного подъема и сборки, разработанный при строительстве моста через реку Хуншуй комбинированный строительный метод проталкивания и тросового подъема и другие методы строительства сыграли важную роль в вопросах эффективности строительного процесса, сокращения сроков строительства, обеспечения безопасности и качества строительства, способствуя инновациям в строительстве мостов, также послужили толчком для инноваций в сфере оборудования и оснащения при строительстве мостовых конструкций . Разработка и применение самоуплотняющегося бетона с добавлением машинного песка успешно решили сложную проблему изыскания сырьевых материалов при строительстве мостов через ущелья и значительно сэкономила стоимость проекта. В настоящее время большинство данных технических разработок разрозненно изложены в отдельных статьях и технических отчетах, существует необходимость систематически обобщить и совершенствовать всю информацию.
В-четвертых, необходимо придавать большое значение работам по управлению и техническому обслуживанию мостов через ущелья в период эксплуатации. Достижения по строительству в Китае мостов через горные районы привлекают внимание во всем мире, но вместе с тем возникают и некоторые проблемы общего характера, такие как появление прогибов и растрескивание на сплошных рамных мостах с большой длиной пролета, повреждения высокопрочных болтов на стальных фермах подвесных мостов, построенных в первоначальные периоды, что угрожает безопасности мостов, все это показывает, что существующая теория проектирования мостов в Китае нуждается в дальнейшем совершенствовании, и срочно требуется проведение тематических исследований , чтобы в кратчайшие сроки выяснить причины и улучшить методы проектирования. Более того, данные проблемы вызывают трудности в обслуживании и ремонте мостов у управляющих организаций . Мосты расположены в отдаленных и глухих гористых районах, а высокие опоры и башни добавляют трудности при проведении работ по техническому обслуживанию. Обслуживающие организации должны выявлять и предотвращать возможные небольшие отклонения, чтобы избежать катастрофических аварий , к которым, как правило, приводят накопленные в течении долгого периода времени незначительные проблемы.
Несмотря на то, что в Китае и за рубежом проводятся исследования и практическое применение технологий по техническому обслуживанию и ремонту балочных бетонных мостов, арочных мостов, сплошных рамных мостов и вантовых мостов, однако в важнейших ключевых технологиях технического обслуживания и ремонта достигнут незначительный прогресс. К примеру, во время технического обслуживания и ремонта промежуточных мостовых опор и пилонов на мостах, проложенных через ущелья, проводимые проверки ручным способом не очень эффективны, а охват обнаружения очень узкий , поэтому трудно обеспечивать плановое техническое обслуживание мостов. Необходимо срочно разрабатывать интеллектуальное, информатизированное, автоматизированное контрольно-проверочное оборудование и системы долгосрочного мониторинга. Поэтому рекомендуется проведение исследовательских работ по следующим направлениям:
1. Система управления процессом технического обслуживания, система контроля за перегрузками, система дистанционного мониторинга состояния мостов больших масштабов, совместное использование данных, проведение исследований и разработка приложений .
2. Проведение исследований и разработка оперативных систем мониторинга и раннего предупреждения ситуаций , связанных с устойчивостью склонов, камнепадов.
3. Проведение исследований и разработка контрольно-измерительного оборудования и технологий нового типа, применимого для проверок высоких мостовых опор и башен, мостов через ущелья (например, типа беспилотных летательных аппаратов).
4. Разработка систем сбора изображений в режиме реального времени и анализа данных.
5. Исследования в области аварийного реагирования, обеспечения безопасности и проведения экстренных спасательных работ в экстремальных климатических условиях.
6. Исследование и разработка интеллектуальной экспертной системы для анализа и устранения возможных повреждений моста.
В-пятых, в процессе строительства моста через горные районы можно предусмотреть строительство сельских шоссейных и грунтовых дорог. Во время строительства моста через ущелье прокладываются строительные подъездные пути протяженностью от нескольких километров до десятков километров, которые используются для перевозки строительных материалов, рабочего персонала и механического оборудования, как правило, их эксплуатация завершается после завершения строительства моста.
Участок автодороги от Бадун до Личуань (Юйцюанькоу) на скоростной автодороге 650 в пр. Хубэй имеет протяженность 320 км, а общая протяженность построенной временной подъездной дороги составляет 530,263 км, из данного объема заказчик (командная группа проекта) построил 57 подъездных дорог общей протяженностью 252, 263 км, сумма капиталовложений составила 92,697784 млн. юаней , в последующем строительная организация, исходя из потребностей проекта, построила 130 подъездных дорог к каждой строительной площадке протяженностью 280 км.
Часть местных жителей рассредоточенно проживает рядом со строительными подъездными дорогами, строительство подъездных дорог также решает проблему строительства долгожданных дорог, позволяющих иметь выход из данных труднодоступных горных районов,таким образом создаются условия для их скорейшего избавления от бедности, способствующие экономическому развитию в этнических районах и улучшающие транспортную ситуацию в районах.
В связи с чем, в будущем при строительстве мостов через ущелья необходимо тщательно продумывать строительство сельских шоссейных и грунтовых дорог, включая часть строительства сети сельских дорог, таким образом способствуя максимальному использованию средств, выделяемых на строительство скоростных автодорог и применяя новую модель, заключающуюся в получении двойной выгоды от инвестиций . Соответствующим государственным ведомствам рекомендуется в сжатые сроки провести исследования и разработать соответствующую политику в интересах жителей горных районов.
Глава 2. Подвесные мосты
1. Мост через реку Лунцзян в провинции Юньнань
Мост Лунцзян расположен в административных границах окружного города Баошань в провинции Юньнань, в южной части горного хребта Хэндуань, с восточной стороны мост расположен на территории уезда Лунлин, на западе на территории уезда Тэнчун. Данный мост представляет собой огромный объект на скоростной автодороге S10 Баошань – Тэнчун, а также является объектом управления, относящийся к основной сети магистральных дорог «9210» и к общей сети обычных дорог «7719» провинции Юньнань. Строительство моста началось в июне 2012 г. и было завершено в мае 2016 г.
Рельеф района расположения моста относится к горной местности с ущельями, разделенными средними и высокими горами, представляет собой вулканическое карстовое плато с речной долиной с крутыми склонами. Высота дна долины близлежащего участка реки составляет около 1180 м, долина реки очень глубокая, высота пояса горизонтального участка на склоне долины со стороны Баошань составляет 1400 ~ 1450 м, со стороны уезда Тэнчун составляет 1410 ~ 1480 м, в целом рельеф постепенно снижается от низовья реки к верховью. Долина реки имеет V-образную форму, ширина V-образного устья долины составляет около 1100 м. Долина реки ниже горизонтального участка на склоне очень узкая, с крутыми либо ступенчатыми склонами, общий уклон составляет около 30°; рельеф лавового плато, расположенного выше горизонтального участка на склонах открытый и широкий , с уклоном в сторону долины реки в 5° ~ 15°. Расстояния от проезжей части моста до поверхности реки составляет 283 м, расстояние от верха самого высокого пилона до поверхности реки составляет 470 м.
Мост Лунцзян представляет собой однопролетный подвесной мост с двумя пилонами из стальных балок коробчатого сечения, схема пролетов 320 + 1196 + 320 м. Пилон моста представляет собой железобетонную двухколонную каркасную конструкцию портальной рамы, которая состоит из верхней части пилона, верхнего пилона и нижнего пилона. Высота пилона, примыкающего к горе со стороны Баошань, составляет 169,7 м, из них высота от проезжей части моста составляет 124,6 м; высота пилона со стороны Тэнчун составляет 129,7 м, из них высота от проезжей части моста составляет 124,6 м. Отношение провеса к длине пролета основного тягового троса составляет 1/10,5, поперечное расстояние между центрами двух основных тяговых тросов составляет 25,5 м, диаметр основного тягового троса составляет 728 мм, который состоит из 169 прядей .
Схема моста Лунцзян в разрезе (ед. изм. габаритов: см, ед. изм. м)
В качестве фермы жесткости использована однопролетная плоская стальная балка коробчатого сечения обтекаемой формы,которая очень редко используется на горных подвесных мостах. Общая длина балки составляет 1194,2 м, балка состоит из 97 стальных коробчатых секций , размеры секции: длина 12,4 м, ширина 33,5 м, высота 3,0 м, масса 153 т, сборка и монтаж секций балки выполнялась с использованием канатной подъемной системы. Расстояние от берегового крепления вант до центра пилона составляет 15,2 м, интервальное расстояние от пилонов до остальных вант составляет 12,4 м. В зависимости от особенностей несущей силы вант,учитывая такие факторы,как характеристика материала, способ изготовления, методы установки, техническое обслуживание, последующая замена и др., поэтому были использованы тросовые ванты. Ванты и тросовый зажим соединяются накладной перемычкой , ванты с фермой жесткости соединяются шпоночным соединением. Пилон стоит на фундаменте из свайного поля, под гантелевидным ростверком установлено 16 буронабивных свай диаметром 2,5 м. Сваи были спроектированы с учетом условий ущелья и горной породы, также были предусмотрены общее напряжение стальной обсадной колонны и свай , тем самым обеспечивая сейсмостойкость фундамента. В качестве анкеров оттяжки на обоих сторонах моста используются гравитационные анкеры. Впервые в Китае гравитационная анкеровка фундамента мелкого заложения была установлена на полностью выветрившихся горных породах в районах с высокой сейсмической интенсивностью, была применена система анкеровки с помощью скрученного многожильного стального троса предварительного напряжения, метод анкеровки – переднее анкерное крепление.
Расчетная категория нагрузки моста Лунцзян соответствует классуI дорог общего пользования, стандартная нагрузка от групп людей составляет 2,5 кН/м, а расчетная скорость движения автотранспорта составляет 80 км/ч. Максимальный продольный уклон моста составляет 4,552%, поперечный уклон проезжей части моста составляет 2,0% в обоих направлениях, полная ширина проезжей части моста составляет 33,5 м, четыре полосы движения в обоих направлениях.
Мост Лунцзян, фотография сделана во время строительства
В процессе проектирования моста Лунцзян были разработаны технические решения по проблемам высокой сейсмической интенсивности, неустойчивых береговых откосов, установку анкеров на поддерживающий слой выветрившихся горных пород и др. Особенно что касается вопроса сейсмостойкости моста, поскольку мост расположен в горной местности, подверженной сильным землетрясениям с силой VIII баллов, проектное максимальное ускорение достигает 0,3 д, поэтому целью повышения сейсмостойкости моста в конструкции новаторски были использованы пилоны с аналогичным круглым поперечным сечением с более лучшей степенью тягучести и более легкие стальные балки коробчатого сечения, а также были применены энергозатратные антивибрационные амортизаторы и свайные фундаменты со стальными обсадными трубами.
МостЛунцзян отличается от других подвесных мостов, построенных в горных районах Китая, в его конструкции применены стальные балки коробчатого сечения, в процессе возведения главной балки в полной мере использовали преимущества того, что мосты с обеих сторон были уже построены, построенные части моста способствовали транспортировке секций коробчатых балок. В процессе строительства моста Лунцзян было внесено пять технических новшеств, а именно:
1. Использовалась роботизированная механическая гусеничная тяга для прокладки направляющего троса через реку.
2. Благодаря использованию технологии предварительной формовки и монтажа тросовых прядей в седловую секцию монтаж тросовых прядей занял всего 43 дня, что позволило сэкономить более двух месяцев по сравнению с общей схемой монтажа основного тягового троса.
3. Была использована круглая обмотка, метод обмотки для защиты основного тягового троса, была использована система осушения.
4. Впервые было применено распыление глюконата натрия в качестве замедлителя схватывания в сочетании со строительным методом промывки водой из напорного пистолета в процессе строительства обтески анкерного бетона.
5. Строительная организация изыскивала материалы на месте, вулканический пепел использовался в качестве добавки к бетону для приготовления большого объема анкерного бетона. Кроме того, в процессе строительства строительная организация сталкивалась с рядом трудностей : сложные геологические условия по обеим сторонам расположения моста, трудности при выполнении мероприятий для обеспечения устойчивости откосов, грунт места установки анкерного фундамента представляет собой алевритистую глину, в районе расположения моста очень продолжительный дождливый сезон, что затрудняло выполнение земляных работ.
Строительство моста Лунцзян играет важную роль в структуре транспортного сообщения провинции Юньнань и развитии туризма в западной части провинции.
Мост Лунцзян
2. Мост Айчжай в провинции Хунань
Мост Айчжай расположен в г. Цзишоу в Сянси-Туцзя-Мяоском автономном округе провинции Хунань, мост построен на скоростной автодороге 665 Баотоу – Маомин и является ключевым объектом на скоростной автодороге Цзишоу – Чадун на участке в пр. Хунань автомагистрали Чанша – Чунцин. Строительство моста началось в октябре 2007 г. и было завершено в марте 2012 г., строительство длилось 4 г. и 5 месяцев.
Район строительства моста расположен в большом ущелье Дэхан на границе соединения Юньнань-Гуйчжоуского нагорья и впадины Юаньма, здесь распространен типичный рельеф ущелий с отвесными утесами, с сильно пересеченной местностью с относительной разницей высот 500 м. Нулевая отметка наивысшей точки вершины горы со стороны горы Чадун составляет 736,9 м, нулевая отметка наивысшей точки вершины со стороны г. Цзишоу составляет 649,92 м, нулевая отметка низшей точки на дне ущелья – 236,1м, ширина дна долины около 60 м, ущелье имеет Ц-образную форму. Река Дэхан, протекающая в долине является притоком реки Юаньцзян, река течет с востока на запад, мост Айчжай пересекает ущелье с севера на запад, главные мостовые опоры по обоим сторонам моста расположены на верхней части отвесных скал.
При строительстве моста Айчжай из-за очень специфического ландшафта, особенностей местности и окружающей среды возникло пять основных строительных проблем, а именно:
1. Опасный и непреступный рельеф, перепад высот между проезжей части моста и дном ущелья составляет 335 м, расстояние места установки пилонов с двух сторон до края утеса всего 70 – 100 м.
2. Сложные геологические условия, на месте возведения моста встречалась осыпь, карстовые породы, трещины в породе, обрывистые скалы и другие неблагоприятные условия. Под главной опорой было обнаружено 18 карстовых пещер, в самую большую карстовую пещеру было залито более чем 10 000 куб. м бетона, только на обработку фундамента был потрачен целый год.
3. Переменчивые погодные условия, постоянный туман в ущелье, а максимальная мгновенная скорость ветра составляет 31,9 м/с, что серьезно влияло на выполнение инженерной съемки и монтаж основного тягового троса.
4. Трудности при навесной сборке: сборка и монтаж основного тягового троса и стальной фермы производилась на высоте 300 ~ 400 м, максимальный вес одной подъемной детали составляет 240 т.
5. Трудности при транспортировке, объем перевозок в процессе строительства был очень большой , перевозка большей части материалов осуществлялась по труднопроходимым подъездным дорогам протяженностью 13 км и по спиральной автодороге с крутыми изгибами Айчжай -13.
Схема моста Айчжай в разрезе ( ед. изм. габаритов: см)
Мост Айчжай
Мост Айчжай представляет собой подвесной мост с пилонами и фермой раздельного типа, использована однопролетная балка жесткости из стальной фермы длиной 1176 м. В настоящее время это самый большой в мире подвесной мост на стальных фермах через ущелье. Пилон моста представляет собой железобетонную двухколонную рамную конструкцию. Расположение основного тягового троса 242 + 1176 + 116 м, отношение провеса к длине пролета составляет1/9,6, межосевое расстояние между двумя основными тяговыми тросами в поперечном направлении составляет 27 м, диаметр основного тягового троса составляет 850 мм, трос состоит из 169 прядей . Высота ферменной балки жесткости составляет 7,5 м, полная ширина 27 м, из которых ширина проезжей части моста составляет 24,5 м. Длина стандартной секции составляет 14,5 м, общее количество секций 69. Общая длина стальной балки фермы составляет 1000,5 м, масса около 8000 т. Проезжая часть моста представляет собой составную железобетонную балку, которая состоит из продольной двутавровой балки и бетонной плиты. Количество вант составляет 71 пары, которые соединены с основными тяговыми тросами с помощью пролетных соединений , за исключением вант, которые соединены с анкером на утесе, краевых вант и центральной тросовой оттяжки, где диаметр троса составляет 88 мм, диаметр тросов всех других вант составляет 62 мм. Со стороны Цзишоу в системе анкеровки используются гравитационные анкеры, со стороны Чадун используются туннельная анкерная система, длина анкерного конуса составляет 43 м, угол наклона составляет 38°.
Расчетная категория нагрузки моста соответствует классуI дорог общего пользования, расчетная скорость движения автотранспорта составляет 80 км/ч. Проектная эталонная скорость ветра составляет 34,9 м/с, расчетное максимальное ускорение сейсмических колебаний составляет 0,05 д. Полная ширина проезжей части моста составляет 24,5 м, четыре полосы движения в обоих направлениях, ширина центральной разделительной полосы составляет 2 м, ширина центральной разделительной полосы туннеля Айчжай 111, который соединяет мост со стороны Цзишоу составляет 4,4 м, туннель, соединенный с горой со стороны Чадун представляет собой отдельный туннель. Мост построен с односторонним продольным уклоном в 0,8%. Проектная вершина угла основного тягового троса в общей конструкции главного моста зависит от продольного уклона, ущелье со стороны Чадун на 9,408 м выше, чем ущелье со стороны Цзишоу. Данная конструкция может уменьшить понижение горизонта основного тягового троса крайнего мостового пролета со стороны Цзишоу, также предусматривает более рациональное расположение основного тягового троса крайнего мостового пролета с учетом высоты пилона со стороны Чадун, чтобы несущая сила основного тягового троса на протяжении всего моста была равномерно распределена.
Мост Аичжаи
В конструкцию моста и в процессе строительства моста Айчжай было внесено четыре важных технических новшества, а именно:
• впервые было использовано конструкционное решение раздельного размещения пилонов и балки жесткости;
• впервые в мировой практике была использована технология рельсовой тросовой системы для перемещения элементов при сборке главной фермы;
• впервые на безбалочном участке был использован анкерный вант;
• впервые на практике в технологии предварительного напряжения анкерных сцеплений в горной породе было применено многотонное углеродное волокно, которое является материалом с высокими технологическими и эксплуатационными показателями.
Использование в процессе строительства технологии рельсовой тросовой системы для перемещения элементов фермы значительно ускорило реализацию проекта, потребовалось менее 3 месяцев для завершения возведения всех 69 стальных балок фермы. При прокладке основного тягового троса был установлен рекорд – за сутки было возведено б однолинейных возвратно-поступательных тросов. Все 450 тысяч комплектов высокопрочных болтов для крепления стальной балки фермы были монтированы с точным определением местоположения без единого случая рассверливания. На протяжении всего периода строительства моста не произошло серьезных происшествий , связанных с безопасностью производства, была выполнена задача по обеспечению безопасности производства «без человеческих жертв». Все это было вкладом в успешное завершение строительства моста Айчжай . Строительство моста Айчжай продемонстрировало новые достижения в строительстве автомобильных дорог в Китае и стало «новой местной достопримечательностью» для развития экономического и культурного обмена, для развития туризма и торговли в провинции Хунань.
3. Мост через реку Циншуйхэ и транспортировочный и мост Мяньхуа (Мост "Мать и дитя")
Мост через реку Циншуйхэ расположен в границах уезда Вэнъань провинции Гуйчжоу и является важным узловым сооружением на участке автодороги Гуйян – Вэнъань скоростной автодороги 669 Иньчуань – Вайсе в Гуйчжоу. Строительство моста началось в августе 2013 г. и было завершено в декабре 2015 г. Строительство моста сократило расстояние от Вэнъань до г. Гуйян, которое составляло раньше 160 км до 36 км.
Мост располагается на участке реки Циншуй , которая является притоком первого уровня речной системы Уцзян в бассейне реки Янцзы. Русло реки состоит из твердых горных коренных пород, рельеф местности по обе стороны долины реки обрывистый и крутой , разрезанный очень глубоко, местность очень холмистая, на реке отсутствуют условия для судоходства. Место расположения моста находится прим, в 3,5 км ниже по течению от плотины электростанции Гэлицяо, водохранилище электростанции Гоупитань на главном течении реки Уцзян достигает плотины электростанции Гэлицяо. После водосбора на электростанции, уровень воды в реке поднимается прим, на 20 м, а высота над уровнем воды составляет 629 м. Перепад высот между серединой пролета моста через реку Циншуйхэ и дном долины составляет 407 м. Мост через реку Циншуйхэ представляет собой подвесной мост с балкой жесткости с усиленными стальными фермами, длина главного пролета составляет ИЗО м. Конструкция пролета моста состоит из 9 х 40 м (балка жесткости) + 1130 м (подвесной мост) + 16 х 42 м (балка жесткости), общая длина моста составляет 2171,4 м. По длине пролета мост занимает шестое место в мире среди подвесных мостов со стальными фермами и второе место в Китае. В настоящее время он является самым большим пролетным мостом в провинции Гуйчжоу. Пилон моста представляет из себя железобетонную каркасную конструкцию с двумя колоннами, высота пилона со стороны Кайян составляет 230 м, высота пилона со стороны Вэнъань – 236 м. Схема основного тягового троса 258 + ИЗО + 345 м, отношение провеса к длине пролета 1/10, интервал по горизонтальному направлению моста 27,0 м, по долевому направлению моста 15,2 м. В середине главного пролета, между основным тросом и стальной фермой установлены три парных гибких центральных узла. Основная ферма стальной балки жесткости представляет из себя конструкцию фермы Уоррена с вертикальными элементами решетки фермы, высота фермы составляет 7,0 м, длина между стандартными секциями составляет 7,6 м, межцентровое расстояние между двумя элементами пояса фермы составляет 27,0 м. Вертикальная опора установлена в основании нижнего пояса ферменной балки главной фермы напротив (соответствующем) концевого элемента решетки фермы, по всему мосту установлено 4 опоры. Поперечная ветроустойчивая опора установлена на концевой главной ферме и на внешней стороне нижнего пояса напротив (что соответствует месту) на концевой основной поперечной ферме и нижней поперечной балке, по всему мосту установлено 8 опор. Пилоны с обеих сторон моста установлены на свайных фундаментах из 18 свай диаметром 3,5 м, а все анкерные крепления представляют собой гравитационные анкеры.
Схема моста через реку Циншуйхэ в разрезе (ед. изм. габаритов: см, ед. изм. высоты м)
Расчетная категория нагрузки моста Циншуйхэ соответствует классу I дорог общего пользования, расчетная скорость движения автотранспорта составляет 80 км/ч. габарит проезжей части моста 24,5 м, четыре полосы движения в обоих направлениях. Проектная эталонная скорость ветра составляет 29,4 м/с, категория сейсмобезопасности VII баллов.
Мост через реку Циншуйхэ представляет из себя балку жесткости комбинированной системы из пластин и ферм, по сравнению с традиционной раздельной системой , данная конструкция может сэкономить 10% от стоимости пролетного строения моста. Поскольку не применяются компенсационные швы на плите настила моста и опоры настила, повышается комфортность вождения. Благодаря комбинированной системе из пластин и ферм уменьшается количество секций , увеличивается общая жесткость секции балки,удобно для подъема и горизонтальной транспортировки, к тому же можно одновременно выполнять монтаж настила моста и секции ферменной балки, таким образом не только разрешена проблема затруднительной навесной сборки, но также было значительно сэкономлено время строительства, на установку конструкции балки жесткости моста было потрачено всего 93 дня. В целях удобства выполнения последующего технического обслуживания, для моста было спроектировано самоходное устройство диагностического осмотра основных тяговых тросов, которое может продвигаться по тяговым тросам под большим углом и выполнять автоматический интеллектуальный мониторинг всех участков основных тяговых тросов через тросовые зажимы и мостовые ванты.
Транспортировочный мост Мяньхуа
Мост Мяньхуа расположен на переправе Мяньхуа через реку Циншуйхэ в уезде Кайян провинции Гуйчжоу, через реку. Со стороны уезда Кайян мост соединяется с автодорогой Маоюнь – переправа Мяньхуа, со стороны уезда Вэнъань мост соединяется с участком автодороги Байша – переправа Мяньхуа. Из-за неудобств транспортного сообщения, экономическая жизнь населения, проживающего по обе стороны реки на протяжении долгого времени зависела от перевозок, осуществляемых ручным способом на людях либо на вьючных лошадях, перевозка через реку осуществлялась на лодках, что сильно отражалось на развитие местного транспортного сообщения и экономическое развитие региона в целом. Поэтому строительство моста Мяньхуа имеет очень важное значение для решения проблемы передвижения людей по обе стороны реки, транспортировки сельскохозяйственных продуктов и ускорения экономического развития региона.
В 2001 г. организация-застройщик провела тендер по проекту строительства моста Мяньхуа,совокупные капиталовложения в проект составили около 22 млн. юаней . Однако из-за низкой стоимости проекта, опасного и непреступного рельефа на месте строительства моста, стесненных условий проведения строительных работ, высокой степени трудности строительства, неудобного транспортного сообщения и других препятствий , ни одна строительная организация не приняла участие в тендере, и тендер был закрыт из-за отсутствия участников.
Схема транспортировочного моста Мяньхуа в разрезе (ед. изм. габаритов: см, ед. изм. высоты м)
В августе 2013 г. успешно началось строительство моста через реку Циншуй на участке скоростной автодороги Гуйян – Вэнъань, строительные работы велись на обоих берегах реки. В связи с началом строительства моста через р. Циншуй , вопрос о возможном строительстве моста через переправу Мяньхуа снова был включен в повестку дня. Управление транспортного сообщения уездов Кайян и Вэнъань неоднократно обращалось к организации, осуществлявшей строительство моста через реку Циншуй о возможности реализации проекта строительства моста через переправу Мяньхуа, и в ноябре 2013 г. было достигнуто соглашение.
По первоначальному проекту транспортировочный мост Мяньхуа был спроектирован как железобетонный арочный мост коробчатого сечения, с высокой степенью сложности строительства, продолжительным периодом строительства, учитывая рельеф местности, условия транспортного сообщения, сложность строительства и другие факторы, в итоге был утвержден проект строительства моста с неразрезными фермами на косых опорах. Таким образом, строительство моста через реку Циншуй явилось поворотным пунктом для начала строительства моста Мяньхуа, после чего, основываясь на ресурсы по управлению проектом строительства моста через р. Циншуй , были изысканы необходимые ресурсы строительной организации, осуществлявшей строительство моста через р. Циншуй , таких как строительная бригада, строительная техника, оборотные материалы и др. При возведении стальной фермы была использована производственная технология буксировки методом толкания, обладающая такими преимуществами как низкая стоимость строительства, целостность конструкции, простые и удобные методы строительства.
Транспортировочный мост Мяньхуа
Мост Мяньхуа спроектирован как рамный мост 32 + 51,2 + 32 м с неразрезными фермами на косых опорах, полная длина составляет 122,4 м, габаритная ширина моста 8,8 м, габарит проезжей части моста б м. Расчетная категория нагрузки моста соответствует классуII дорог общего пользования, расчетная скорость движения автотранспорта составляет 20 км/ч. Стальная ферма состоит из цельных секций , высота фермы 4,6 м, состоит из стальной фермы и настила моста, конструктивные элементы соединены высокопрочными болтами. Мостовые устои спроектированы в виде Ц-образных опор, из фундаментных свай построены наклонные отдельно стоящие свайные фундаменты, основной бык моста представляет собой сталежелезобетонную конструкцию, которая собирается из сегментов.
Строительство транспортировочного моста Мяньхуа решило проблему с транспортным сообщением в пограничном регионе уезда Кайян и уезда Вэнъань Цяньнань-Буи-Мяоского автономного округа, а также имеет большое значение для регионального экономического развития, развития культурных связей и социальных отношений . При строительстве этого моста полно использовались строительные ресурсы с проекта строительства моста через реку Циншуй . В проекте моста комплексно учтены такие факторы, как проектирование, технология строительства, стоимость строительства и др., а также был накоплен ценный опыт в деле проектирования, строительства и управления эксплуатацией мостами в горных районах с небольшими капиталовложениями.
4. Мост через реку Дадухэ в уезде Лудин провинции Сычуань
Мост через реку Дадухэ расположен в уезде Лудин Гардзе-Тибетского автономного округа провинции Сычуань, мост построен на скоростной автодороге G4218 Яань – Кандин. Строительство моста было начато в мае 2014 г., в настоящее время ведется его строительство.
Район моста относится к рельефу горной местности тектонической денудации, относительная разница высот между двумя горными хребтами и дном долины составляет 1122 м. Крупные горные массивы с двух сторон ущелья, крутые поперечные склоны с естественным уклоном 45°~ 55°, часть коренных пород обнажена, образуя пропасти, местами уклон достигает 60° ~ 70°. Река Дадухэ протекает через участок, где расположен мост с севера на юг, когда выполняется водосбор в нормальном режиме на ГЭС Лудин, ширина водной поверхности составляет 430 – 460 м. Основной мост через реку Дадухэ уезда Лудин представляет собой однопролетный подвесной мост со стальными фермами длиной 1100 м, подход к мосту правой линии с берега со стороны уезда Яань выполнен как балочный мост с прогонами коробчатого сечения размером 3 х 34 м, подход к мосту левой линии выполнен как балочный мост с прогонами коробчатого сечения размером 3 х 30 м. Подход к мосту с берега со стороны уезда Кандин выполнен как двойной балочный мосте прогонами коробчатого сечения размером 3 х 34 + 3 х 34 м, общая протяженность составляет 1411 м, высота моста 285 м. Схема основных тяговых тросов на пролете 220 + 1100 + 253 м, отношение подъема к пролету составляет 1/9, поперечное расстояние между центрами составляет 27 м. Все основные тяговые тросы состоят из 187 прядей диаметром 773,0 мм по всей длине троса.
Основная балка жесткости представляет из себя конструкцию фермы Уоррена с вертикальными элементами решетки фермы, в верхнем, нижнем пояса ферменной балки и раскосе решетчатой фермы использован коробчатый профиль, в качестве вертикального элемента решетки фермы используются Н-образное поперечное сечение.
Ширина главной фермы составляет 27,0 м, высота 8,2 м, отношение ширины к пролету 1/40,7, отношение подъема к пролету 1/134,1. Для изготовления верхнего и нижнего пояса балки жесткости использован коробчатый профиль, в вертикальных и диагональных элементах заполнения фермы используются Н-образное поперечное сечение. Длина между промежуточными панелями главной фермы составляет 10 м, на каждом месте установки панели установлена поперечная балка. В конструкции проезжей части моста используется составная сталежелезобетонная конструкция из вертикальной двухтавровой балки и бетонного настила, поперечный шаг между продольными балками составляет 2,85 м, высота балки – от 0,54 до 0,768 м, раскос установлен на верхний пояс, теоретическая длина пролета 10,0 м. Главная опора представляет собой железобетонную каркасную конструкцию арочного типа, пилон представляет собой полый коробчатый профиль, балка представляет собой предварительно напряженную бетонную конструкцию с волнообразными стальными ребрами. Высота пилонов моста по обеим сторонам берега составляет 188,0 м. На берегу со стороны уезда Яань использованы туннельные анкеры длиной 157,5 м. Корпус анкерного конуса изготовлен из водонепроницаемого бетона на микрорасши ряющемся цементе и смешан с полиакрилонитрильным волокном. На берегу со стороны уезда Кандин использованы гравитационные анкеры, размер которых составляет 85 м (длина) х 60 м (ширина) х 56 м (высота).
Схема моста Лудин в разрезе (ед. изм. габаритов: см, ед. изм. высоты м)
Мост Лудин, фотографии сделаны во время строительства и после его завершения
Расчетная категория нагрузки моста через реку Дадухэ уезда Лудин соответствует классуI дорог общего пользования, расчетная скорость движения автотранспорта составляет 80 км/ч, проезжая часть моста состоит из четырех полос движения в обоих направлениях. В ущелье в районе расположения моста часто стоит туман, переменчивые погодные условия, постоянное нарушение течения воздушных потоков, мгновенная скорость ветра составляет 32,6 м/с, категория сейсмобезопасности VIII баллов, суточная амплитуда температур оставляет более 15.
При проектировании конструкции моста через реку Дадухэ уезда Лудин основное внимание было уделено решению трех основных проблем: высокой сейсмической интенсивности, сложной ветровой ситуации и плохой устойчивости склонов, было внесено несколько важных технических новшеств, а именно:
1. Со стороны уезда Лань использованы глубокие туннельные анкеры, тем самым были сокращены объемы земляных работ, обеспечена защита окружающей среды и снижена стоимость строительства. В то же время связанная конструкция туннельного анкера и туннеля также обеспечивает надежность туннельного анкера.
2. Для разрешения вопроса обеспечения сейсмостойкости подвесного моста с большим пролетом в горном районе с высокой сейсмической интенсивностью, была предложена новаторская конструктивная форма, в которой балка пилона выполнена в виде комбинированной балки с волнообразными стальными ребрами; в качестве центрального соединяющего узла использована стальная опора, предотвращающая потерю устой – чивости при продольном изгибе, таким образом была решена проблема с обеспечением продольной сейсмостойкости.
3. По вопросу стабилизации каменистой почвы, была разработана опорно-удерживающая конструкция. Противоскользящие сваи расположены в клинообразной форме, каменный поток, который может быть вызван сильными землетрясениями с помощью «направляющего» способа, отводится за пределы моста в наклонном направлении, обеспечивая тем самым, что каменный поток не подвергнет опасности безопасность моста.
4. По вопросу проектных решений ветроустойчивости конструкции, с учетом результатов СРО-анализа зонального рельефа местности, на основе эксперимента с моделью местности в аэродинамической трубе,были проведены эксперименты с моделью сегментов балки жесткости в аэродинамической трубе, в результате чего были разработаны проектные решения по оптимизации аэродинамических параметров, чтобы избежать аварий – ных ситуаций , вызванных повреждениями ветром.
5. Мост через реку Балинхэ в провинции Гуйчжоу
Мост через реку Балинхэ расположен на границе автономного уезда Гуаньлин, и административного района Хуангошу в провинции Гуйчжоу, мост построен на участке соединяющем Чжэннин и Шэнцзингуань в Гуйчжоу скоростной автодороги Б60 Шанхай -Куньмин. Строительство моста началось в апреле 2005 г. и было завершено в декабре 2009 г., строительство длилось 4 г. и 8 месяцев. Мост через реку Балинхэ с восточной части находится недалеко от великолепного водопада Хуангошу, с западной части проходит древний путь Суома эпохи Троецарствия, с южной стороны граничит с горами с таинственными наскальными надписями, которые называются «Святые писания на красной скале», с северной части находится водопад Дишуйтань. После завершения строительства, мост прекрасно украсил известную природную достопримечательность провинции Гуйчжоу – водопад Хуангошу.
Район строительства моста расположен в высокогорной местности уезда Цяньси, мост пересекает ущелье, расположенное в долине реки Балинхэ. Рельеф ущелья на западном берегу очень отвесный и крутой , с большими подъемами и спадами, рельеф на восточном берегу относительно плавный . Ширина ущелья составляет около 2000 м, глубина – 600 м. Расстояние от проезжей части моста до нормального уровня воды составляет около 370 м.
Схема моста через реку Балинхэ в разрезе (ед. изм. габаритов: см)
Мост через реку Балинхэ представляет собой однопролетный подвесной мост со стальными балками жесткости с главным пролетом 1088 м, подход к мосту с двух берегов представляет собой конструкцию мостовой балки с прогонами коробчатого сечения из предварительно напряженного бетона общей длиной 2237 м. Пилоны моста представляют собой железобетонную двухколонную рамную конструкцию, общая высота пилона на восточном берегу составляет 185,788 м, высота пилона на западном берегу составляет 201,316 м. Планировка основного тягового троса составляет 248 + 1088 + 228 м, отношение провеса к длине пролета составляет 1/10,3, а межцентровое расстояние между двумя основными тросами по горизонтали составляет 28 м. Мостовой трос состоит из высокопрочных оцинкованных параллельных прядей стального троса (РР\Л/Б), каждая прядь состоит из 91 стальной жилы. Главная ферма ферменной балки жесткости представляет собой конструкцию фермы Уоррена с вертикальными элементами решетки фермы, которая состоит из верхнего пояса, нижнего пояса, вертикальных и диагональных (раскосых) элементов решетки фермы. Высота главной фермы составляет 10 м, длина стандартной секции составляет 10,8 м, межцентровое расстояние между левой и правой решеткой двух главных ферм такое же, как расстояние между основными тяговыми тросами, составляет 28 м. Вант моста сделан из стальных тросов, на каждой точке подвеса установлены 2 ванта. Ванты и кабельный зажим соединены с помощью пролетных соединений , балка жесткости соединена шарнирным штифтом, в разъеме шарнирного штифта имеется самосмазывающийся подшипник для уменьшения изгиба ванты. В целях повышения степени жесткости всего моста, уменьшения продольного перемещения балки жесткости, устранения возможных проблем, связанных с изгибом и усталостью пролетных вант на середине пролета, на ферменной балке жесткости с б секциями, расположенными рядом с серединой пролета и между основными тяговыми тросами были установлены 3 гибких узловых центральных элемента. Пилоны на восточном и западном берегах построены на свайном фундаменте, диаметр свай составляет 2,5 м, длина свай , установленных на фундаменте восточного берега составляет 60 м, длина свай , установленных на фундаменте западного берега 40 м. Для анкеровки на западном берегу использованы туннельные анкеры, общая осевая длина анкерного грота составляет 74,34 м, объем заливки бетона при строительстве корпуса анкерного конуса составил 23 000 куб. м; объем заливки бетона при строительстве гравитационной анкеровки на восточном берегу составил почти 82 тысячи куб. м.
Расчетная категория нагрузки моста через реку Балинхэ соответствует классуI дорог общего пользования, расчетная скорость движения автотранспорта составляет 80 км/ч, габарит проезжей части моста 24,5 м, четыре полосы движения в обоих направлениях. Проектная эталонная скорость ветра составляет 25,9 м/с, категория сейсмобезопасности VII баллов.
Мост через реку Балинхэ
С точки зрения проектирования и строительства, в конструкции главной фермы и основной поперечной фермы ферменной балки жесткости моста че рез реку Балинхэ были применены цельные узловые элементы нового типа, традиционный метод вставки при соединении раскоса решетчатой фермы с цельными узловыми элементами был заменен на встречное стыкование, тем самым был достигнут двойной эффективный результат: экономия стали, а также удобство при строительстве и монтаже. Монтаж балки жесткости из стальных ферм осуществлялся с помощью цельноповоротной мостовой крановой установки, крановая установки укладки с пилонов, расположенных на обоих берегах до середины пролета, использовался метод последовательного жесткого соединения. В целях повышения ветроустойчивости балки жесткости были использованы такие мероприятия по повышению ветроустойчивости, как применение флюгерного (аэродинамического) пояса балки и канавок (прорезей ) в середине настила моста, в пределах 80 секций , расположенных в средней части ферменной балки жесткости были установлены флюгерные (аэродинамические) полки, при изготовлении флюгерного (аэродинамического) пояса балки был применен новый материал – специальная строительная пластмасса РРБ (полифениленсульфид).
19 мая 2016 г. прим, в 17:30 в районе расположения моста через реку Балинхэ случилось редкое погодное явление: на мост обрушился шквал сильного ветра, проливного дождя и града, в результате чего были повреждены оптические кабели связи, кабелепроводы, опоры освещения и флюгерные (аэродинамические) пояса моста. По фактическим данным мониторинга, мгновенная максимальная скорость ветра достигла 34,4 м/с, по силе ветра в баллах случился ураган в XII баллов, что намного превышало проектную эталонную скорость ветра в 25,9 м/с. Результаты оценки последствий стихийного бедствия показали, что, помимо повреждения вспомогательных сооружений моста, сильный ветер не повлиял на конструктивную безопасность моста, тем самым был продемонстрирован уровень строительства моста через реку Балинхэ.
Мост через реку Балинхэ, фотографии сделаны во время строительства и после его завершения
6. Мост через реку Сыдухэ в провинции Хубэй
Мост через реку Сыдухэ расположен в границах уезда Бадун Эньши-ТуцзяМяоского автономного округа в провинции Хубэй , мост простроен на скоростной автодороге Б50 Шанхай – Чунцин. 20 августа 2004 г. было начато строительство моста, 30 ноября 2009 г. он был запущен в эксплуатацию и открыт для движения.
Мост через реку Сыдухэ представляет собой подвесной мост со стальными балками жесткости с длиной главного пролета 900 м, мост проложен через ущелье реки Сыдухэ, разность высот между проезжей частью моста и дном долины составляет 560 м. Пилон моста представляет собой железобетонную двухколонную рамную конструкцию, которая состоит из фундамента, основания пилона, пилона и поперечных балок (верхняя поперечная балка, средняя поперечная балка). Высота пилона со стороны городского округа Ичан составляет 113,6 м, высота пилона со стороны Эньши составляет 118,2 м. Схема основного тягового троса по длине пролета 114 + 900 + 208 м, отношение провеса к длине пролета 1/10, мост состоит из пяти пролетов: восточный анкерный пролет, восточный крайний береговой мостовой пролет, средний пролет, западный крайний береговой мостовой пролет и западный анкерный пролет. Средний пролет вдоль моста оборудован 69 точками подвеса с интервалом 12,8 м, в точках подвеса в середине пролета установлено узловое соединение, остальные 68 точек подвеса расположенные вдоль моста оснащены параллельными двойными высокопрочными вантами из стальных тросов с интервалом 0,44 м, по всей длине моста установлено 272 вант. Усиленное пролетное строение со сквозными фермами состоит из главной фермы, верхнего и нижнего горизонтальных соединений и поперечной сквозной фермы. Главная ферма представляет из себя конструкцию фермы Уоррена, высота фермы составляет 6,5 м, ширина фермы – 26,0 м, длина малой секции – 6,4 м, длина большой секции – 12,8 м.
При строительстве стальной фермы использовалась технология цельного соединения узловых элементов: решетки фермы сваривались с одним либо двумя узловыми элементами в единое целое на заводе, для соединения сквозной фермы на строительной площадке использовались высокопрочные болты. На обоих концах балки жесткости по обеим сторонам верхнего и нижнего поясов установлены ветрозащитные опоры, в середине главного пролета установлены центральные узловые соединения, при этом центральная перегородка закрыта и вдоль пролета моста установлена баллотировочная плита Т-образной формы для повышения ветроустойчивости. На берегу со стороны округа Ичан использованы туннельные анкеры, на берегу со стороны г. Эньши – гравитационные анкеры.