Введение
Уважаемые будущие, настоящие и вчерашние курсанты автошкол! Из личного опыта знаем: каждому, кто готовится к нелегкому жизненному испытанию под названием «водительские курсы», очень уж хочется как-нибудь «опустить» теорию и поскорее сесть за руль автомобиля, пусть даже учебного. Равно как и тем, кто уже ерзает на стуле, сидя за партой, и с тоской изучает, что такое гужевая повозка или чем велосипед отличается от мопеда.
Однако же в теоретической части есть немало полезной и интересной информации. Проблема в том, что часто в стандартных учебниках она изложена сухо и непонятно. По этой причине и родилась книга, которую вы держите в руках.
Поверьте, все, что в ней содержится, пригодится не только для сдачи зачетов и экзаменов на пути к заветной цели, но и послужит вам в будущем хорошим подспорьем. Ведь гораздо лучше «опустить» не теорию, а звание «чайника» в водительской карьере. Для этого необходимо обладать знаниями, чтобы не тратить пол-стоимости автомобиля на замену целого узла вместо одного подшипника.
К сожалению, подобный «развод на деньги» происходит сплошь и рядом.
Так что читайте, запоминайте, усваивайте, переваривайте, сдавайте экзамены, покупайте машину и становитесь настоящим водителем!
1. Общее устройство автомобиля
К транспортным средствам категории «В»
относятся автомобили, разрешенная максимальная масса которых не превышает 3500 кг
с количеством сидячих мест, помимо сиденья водителя, не более восьми.
Любой легковой автомобиль состоит из следующих элементов (рис. 1.1):
♦ двигателя;
♦ трансмиссии;
♦ ходовой части;
♦ механизмов управления;
♦ электрооборудования;
♦ дополнительного оборудования;
♦ кузова.
Двигатель – это «сердце» машины. Он сжигает топливо и преобразует тепловую энергию в механическую: заставляет вращаться коленчатый вал, затем вращение через трансмиссию передается на колеса (составляющую ходовой части).
Так машина приводится в движение.
Рис. 1.1.
Общий вид легкового автомобиля: 1 – фара; 2 – вентилятор системы охлаждения двигателя; 3 – радиатор системы охлаждения двигателя; 4 – распределитель зажигания; 5 – двигатель; 6 – аккумуляторная батарея; 7 – катушка зажигания; 8 – воздушный фильтр; 9 – телескопическая амортизаторная стойка передней подвески; 10 – бачок омывателя ветрового стекла; 11 – коробка передач; 12 – ручка стеклоподъемника; 13 – внутренняя ручка двери; 14 – рычаг задней подвески; 15 – элемент обогрева заднего стекла; 16 – основной глушитель; 17 – задний амортизатор; 18 – задний тормоз; 19 – балка задней подвески; 20 – поперечная штанга задней подвески; 21 – топливный бак; 22 – рычаг стояночной тормозной системы; 23 – дополнительный глушитель; 24 – вакуумный усилитель тормозной системы; 25 – вал привода передних колес; 26 – передний тормоз; 27 – штанга стабилизатора передней подвески
Во время движения водитель управляет автомобилем с помощью рулевого колеса и педалей, представляющих собой механизмы управления. Он включает свет фар и указатели поворотов, то есть пользуется электрооборудованием.
При этом водитель пристегнут ремнем безопасности, ему тепло (работает обогреватель) – задействовано дополнительное оборудование.
Кузов среднестатистического легкового автомобиля состоит из моторного отсека (там находится двигатель), пассажирского салона и багажного отделения. Он же является несущей конструкцией для узлов и агрегатов автомобиля.
Современные автомобили можно классифицировать по нескольким признакам: по типу кузова, типу и рабочему объему двигателя, типу привода колес и габаритным размерам.
Кузова современных легковых автомобилей разнообразны и многофункциональны, хотя, конечно, их основное предназначение – перевозка пассажиров и небольшой поклажи.
В зависимости от формы кузова и количества посадочных мест легковые автомобили делятся на следующие типы.
Седан – машина с двумя, четырьмя или даже шестью боковыми дверями. Характерные черты – моторный отсек и багажное отделение у седанов вынесены наружу, то есть изолированы от салона (рис. 1.2). Седаны, имеющие шесть боковых дверей и перегородку, отделяющую водительскую секцию салона от пассажирской, называют лимузинами.
Рис. 1.2. Седан – самый распространенный тип кузова
Купе – двухдверный кузов с одним или двумя рядами полноразмерных или укороченных сидений (есть варианты, в которых задние сиденья – детские) (рис. 1.3).
Универсал – автомобиль с дверью в задней стенке кузова. Отличается от остальных типов тем, что имеет постоянный грузовой отсек, не отделяющийся от пассажирского стационарной перегородкой (рис. 1.4).
Рис. 1.3. Купе
Рис. 1.4. Универсалы любят дачники и путешественники
Хетчбэк – гибрид седана и универсала.
В наше время довольно популярный тип кузова. Как и в универсале, в хетчбэке задний ряд сидений складывается (рис. 1.5).
Рис. 1.5. Хетчбэк
Вагон – он же мини-вэн. Характерные признаки – моторный отсек и багажное отделение не выступают за пределы кузова (рис. 1.6).
Рис. 1.6. Мини-вэн удобен для семейных поездок
Кабриолет – автомобиль со складывающимся верхом и опускающимися боковыми стеклами окон (рис. 1.7).
Рис. 1.7. Кабриолет
Джип – все более популярный тип кузова: вытянутый вверх хетчбэк (рис. 1.8).
Рис. 1.8. Джип
Пикап – закрытая кабина (одно– или двухрядная) и открытая платформа для грузов с откидным задним бортом (может иметь мягкий или жесткий верх) (рис. 1.9).
Рис. 1.9. Пикап удобен при перевозке грузов
Большинство современных автомобилей оснащено двигателями, работающими на бензине или на дизельном топливе. Следовательно, по типу двигателя автомобили делятся на бензиновые и дизельные.
По рабочему объему двигателей машины классифицируются следующим образом:
♦ особо малый класс (так называемые малолитражки) – до 1,1 литра;
♦ малый класс – от 1,1 до 1,8 литра;
♦ средний класс – от 1,8 до 3,5 литра;
♦ большой класс – 3,5 литра и более.
В зависимости от того, на какую колесную ось (переднюю или заднюю) передается крутящий момент от двигателя, автомобили делятся на заднеприводные, переднеприводные и полноприводные.
Заднеприводные – автомобили, у которых крутящий момент от двигателя передается на задние колеса (рис. 1.10).
Рис. 1.10. Заднеприводной автомобиль
Движение происходит по толкательному принципу: задние (ведущие) колеса толкают вперед автомобиль, а передние (ведомые) служат для изменения направления движения.
Переднеприводные – автомобили, в которых крутящий момент от двигателя передается на передние колеса, которые тащат за собой всю машину и служат для изменения направления движения (рис. 1.11).
Кстати, переднеприводной автомобиль более устойчив на дороге.
Рис. 1.11.
Переднеприводной автомобиль
Полноприводные – автомобили, в которых крутящий момент передается и на передние, и на задние колеса одновременно (рис. 1.12).
Рис. 1.12. Полноприводной автомобиль: а – с раздаточной коробкой; б – с полным приводом, подключаемым автоматически; в – с постоянным полным приводом
В современной автомобильной промышленности различают шесть европейских классов в зависимости от габаритных размеров автомобиля. Классы обозначаются буквами латинского алфавита: A, B, C, D, E, S (или F) (рис. 1.13).
Рис. 1.13. Классификация автомобилей по габаритным размерам
♦ А – мини-класс. Характеризуется длиной не более 3,6 м и шириной до 1,6 м. Такие автомобили могут быть как трех-, так и пятидверными.
♦ В – малый класс. Длина кузова – от 3,6 до 3,9 м, ширина – от 1,5 до 1,7 м.
♦ С – низший средний класс (в народе – гольф-класс или компакт-класс). Длина таких машин – от 3,9 до 4,4 м, ширина – от 1,6 до 1,75 м.
♦ D – средний класс. К этой категории относятся автомобили длиной от 4,4 до 4,7 м и шириной от 1,7 до 1,8 м.
♦ Е – высший средний класс, или бизнескласс. Это кузова от 4,6 до 4,8 м в длину и более 1,7 м в ширину.
♦ S (F) – класс люкс (представительский класс). Автомобили длиной свыше 4,8 м и шириной более 1,7 м.
2. Двигатель внутреннего сгорания (ДВС)
Общее устройство и работа ДВС
Почти на всех современных автомобилях в качестве силовой установки применяется двигатель внутреннего сгорания (ДВС) (рис. 2.1).
Существуют еще электромобили, но их мы рассматривать не будем.
Рис. 2.1. Внешний вид двигателя внутреннего сгорания
В основе работы каждого ДВС лежит движение поршня в цилиндре под действием давления газов, которые образуются при сгорании топливной смеси, именуемой в дальнейшем рабочей.
При этом горит не само топливо. Горят только его пары, смешанные с воздухом, которые и являются рабочей смесью для ДВС. Если поджечь эту смесь, она мгновенно сгорает, многократно увеличиваясь в объеме. А если поместить смесь в замкнутый объем, а одну стенку сделать подвижной, то на эту стенку будет воздействовать огромное давление, которое будет двигать стенку.
ПРИМЕЧАНИЕ
В ДВС из каждых 10 литров топлива только около 2 литров используется на полезную работу, остальные 8 литров сгорают впустую. То есть КПД ДВС составляет всего 20 %.
ДВС, используемые на легковых автомобилях, состоят из двух механизмов: кривошипношатунного и газораспределительного, а также из следующих систем:
♦ питания;
♦ выпуска отработавших газов;
♦ зажигания;
♦ охлаждения;
♦ смазки.
Основные детали ДВС:
♦ головка блока цилиндров;
♦ цилиндры;
♦ поршни;
♦ поршневые кольца;
♦ поршневые пальцы;
♦ шатуны;
♦ коленчатый вал;
♦ маховик;
♦ распределительный вал с кулачками;
♦ клапаны;
♦ свечи зажигания.
Большинство современных автомобилей малого и среднего класса оснащены четырехцилиндровыми двигателями. Существуют моторы и большего объема – с восьмью и даже двенадцатью цилиндрами (рис. 2.2). Чем больше объем двигателя, тем он мощнее и тем выше потребление топлива.
Рис. 2.2. Схемы расположения цилиндров в двигателях различной компоновки:
а – четырехцилиндровые; б – шестицилиндровые; в – двенадцатицилиндровые (α – угол развала)
Принцип работы ДВС проще всего рассматривать на примере одноцилиндрового бензинового двигателя. Такой двигатель состоит из цилиндра с внутренней зеркальной поверхностью, к которому прикручена съемная головка. В цилиндре находится поршень цилиндрической формы – стакан, состоящий из головки и юбки (рис. 2.3). На поршне есть канавки, в которых установлены поршневые кольца. Они обеспечивают герметичность пространства над поршнем, не давая возможности газам, образующимся при работе двигателя, проникать под поршень. Кроме того, поршневые кольца не допускают попадания масла в пространство над поршнем (масло предназначено для смазки внутренней поверхности цилиндра). Иными словами, эти кольца играют роль уплотнителей и делятся на два вида: компрессионные (те, которые не пропускают газы) и маслосъемные (препятствующие попаданию масла в камеру сгорания) (рис. 2.4).
Рис. 2.3. Поршень
Смесь бензина с воздухом, приготовленная карбюратором или инжектором, попадает в цилиндр, где сжимается поршнем и поджигается искрой от свечи зажигания. Сгорая и расширяясь, она заставляет поршень двигаться вниз. Так тепловая энергия превращается в механическую.
Рис. 2.4. Поршень с шатуном:
1 – шатун в сборе; 2 – крышка шатуна; 3 – вкладыш шатуна; 4 – гайка болта; 5 – болт крышки шатуна; 6 – шатун; 7 – втулка шатуна; 8 – стопорные кольца; 9 – палец поршня; 10 – поршень; 11 – маслосъемное кольцо; 12, 13 – компрессионные кольца
Далее следует преобразование хода поршня во вращение вала. Для этого поршень с помощью пальца и шатуна шарнирно соединен с кривошипом коленчатого вала, который вращается на подшипниках, установленных в картере двигателя (рис. 2.5).
В результате перемещения поршня в цилиндре сверху вниз и обратно через шатун происходит вращение коленчатого вала.
Верхней мертвой точкой (ВМТ) называется самое верхнее положение поршня в цилиндре (то есть место, где поршень перестает двигаться вверх и готов начать движение вниз) (см. рис. 2.3). Самое нижнее положение поршня в цилиндре (то есть место, где поршень перестает двигаться вниз и готов начать движение вверх) называют нижней мертвой точкой (НМТ) (см. рис. 2.3). А расстояние между крайними положениями поршня (от ВМТ до НМТ) называется ходом поршня.
Рис. 2.5. Коленчатый вал с маховиком:
1 – коленчатый вал; 2 – вкладыш шатунного подшипника; 3 – упорные полукольца; 4 – маховик; 5 – шайба болтов крепления маховика; 6 – вкладыши первого, второго, четвертого и пятого коренных подшипников; 7 – вкладыш центрального (третьего) подшипника
Когда поршень перемещается сверху вниз (от ВМТ до НМТ), объем над ним изменяется от минимального до максимального. Минимальный объем в цилиндре над поршнем при его положении в ВМТ – это камера сгорания.
А объем над цилиндром, когда он находится в НМТ, называют рабочим объемом цилиндра.
В свою очередь, рабочий объем всех цилиндров двигателя в сумме, выраженный в литрах, называется рабочим объемом двигателя. Полным объемом цилиндра называется сумма его рабочего объема и объема камеры сгорания в момент нахождения поршня в НМТ.
Важной характеристикой ДВС является его степень сжатия, которая определяется как отношение полного объема цилиндра к объему камеры сгорания. Степень сжатия показывает, во сколько раз сжимается поступившая в цилиндр топливо-воздушная смесь при перемещении поршня от НМТ к ВМТ. У бензиновых двигателей степень сжатия находится в пределах 6–14, у дизельных – 14–24. Степень сжатия во многом определяет мощность двигателя и его экономичность, а также существенно влияет на токсичность отработавших газов.
Мощность двигателя измеряется в киловаттах либо в лошадиных силах (используется чаще). При этом 1 л. с. равна примерно 0,735 кВт.
Как мы уже говорили, работа двигателя внутреннего сгорания основана на использовании силы давления газов, образующихся при сгорании в цилиндре топливо-воздушной смеси.
В бензиновых и газовых двигателях смесь воспламеняется от свечи зажигания (рис. 2.6), в дизельных – от сжатия.
Рис. 2.6. Свеча зажигания
При работе одноцилиндрового двигателя его коленчатый вал вращается неравномерно: в момент сгорания горючей смеси резко ускоряется, а все остальное время замедляется.
Для повышения равномерности вращения на коленчатом валу, выходящем наружу из корпуса двигателя, закрепляют массивный диск – маховик (см. рис. 2.5). Когда двигатель работает, вал с маховиком вращаются.
А сейчас поговорим немного подробнее о работе одноцилиндрового двигателя.
Повторим, первое действие – попадание внутрь цилиндра (в пространство над поршнем) топливо-воздушной смеси, которую приготовил карбюратор или инжектор. Этот процесс называется тактом впуска (первый такт). Заполнение цилиндра двигателя топливо-воздушной смесью происходит, когда поршень из верхнего положения движется в нижнее. При этом к цилиндру двигателя подведены два канала: впускной и выпускной. Горючая смесь впускается через первый канал, а продукты ее сгорания выходят через второй. Непосредственно перед входом в цилиндр в этих каналах установлены клапаны. Их принцип действия очень прост: клапан – это подобие гвоздя с большой круглой шляпкой, перевернутый шляпкой вниз, которой закрывается вход из канала в цилиндр.
При этом шляпка прижимается к кромке канала мощной пружиной и закупоривает его.
Если нажать на клапан (тот самый гвоздь), преодолев сопротивление пружины, то вход в цилиндр из канала откроется (рис. 2.7).
Во время этого такта поршень перемещается из ВМТ в НМТ. При этом впускной клапан открыт, а выпускной закрыт. Через впускной клапан цилиндр заполняется горючей смесью до тех пор, пока поршень не окажется в НМТ, то есть его дальнейшее движение вниз станет невозможным. Из ранее сказанного мы с вами уже знаем, что перемещение поршня в цилиндре влечет за собой перемещение кривошипа, а следовательно, вращение коленчатого вала и наоборот. Так вот, за первый такт работы двигателя (при перемещении поршня из ВМТ в НМТ) коленвал проворачивается на пол-оборота.
После того как топливо-воздушная смесь, приготовленная карбюратором или инжектором, попала в цилиндр, смешалась с остатками отработавших газов и за ней закрылся впускной клапан, она становится рабочей.
Теперь наступил момент, когда рабочая смесь заполнила цилиндр и деваться ей стало некуда: впускной и выпускной клапаны надежно закрыты. В этот момент поршень начинает движение снизу вверх (от НМТ к ВМТ) и пытается прижать рабочую смесь к головке цилиндра (см. рис. 2.7). Однако, как говорится, стереть в порошок эту смесь ему не удастся, поскольку преступить черту ВМТ поршень не может, а внутреннее пространство цилиндра проектируют так (и соответственно располагают коленчатый вал и подбирают размеры кривошипа), чтобы над поршнем, находящимся в ВМТ, всегда оставалось пусть не очень большое, но свободное пространство – камера сгорания. К концу такта сжатия давление в цилиндре возрастает до 0,8–1,2 МПа, а температура достигает 450–500 °C.